 
          3403
        
        
          Determination of the thermal parameters of a clay from heating cell tests
        
        
          Détermination des paramètres thermiques d'une argile à partir d’essais dans une cellule de
        
        
          chauffage
        
        
          Romero E., Lima A., Gens A., Vaunat J.
        
        
          
            Department of Geotechnical Engineering and Geosciences, Universitat Politècnica de Catalunya, Barcelona, Spain
          
        
        
          Li X.L.
        
        
          
            EURIDICE / SCK.CEN, Mol, Belgium
          
        
        
          ABSTRACT: Boom Clay is being studied in Belgium in connection with the design of a repository for radioactive waste. Within this
        
        
          context, thermal impact may play an important role on the behaviour of this low-permeability clay. To evaluate this impact, heating
        
        
          pulse tests on intact borehole samples were carried out using an axi-symmetric and constant volume heating cell with controlled
        
        
          hydraulic boundary conditions. Attention is focused on the time evolution of temperature and pore water pressure changes along
        
        
          heating and cooling paths –i.e., pore pressure build-up during quasi-undrained heating and later dissipation to the applied hydraulic
        
        
          boundary conditions–. A coupled thermo-hydro-mechanical finite element program was used in a first stage to determine thermal
        
        
          parameters by back-analysis and then to simulate the experimental results.
        
        
          RÉSUMÉ: L’argile de Boom est un matériau actuellement étudié en Belgique dans le cadre de la conception d’un centre de stockage
        
        
          de déchets radioactifs. Dans ce contexte, l’impact thermique est susceptible de jouer un rôle important dans la réponse de la formation
        
        
          argileuse, de faible perméabilité. Afin d’évaluer cet impact, des essais de chauffage par impulsion ont été réalisé sur des échantillons
        
        
          intacts, dans une cellule axisymétrique à volume constant qui permet de contrôler les conditions hydrauliques à sa frontière. Les
        
        
          mesures obtenues en termes d’évolution de température et de pression d’eau lors de cheminements de chauffage et de refroidissement
        
        
          indiquent le développement initial de pression de pores en conditions quasi-non drainées (cas du chauffage), suivi d’une dissipation
        
        
          postérieure vers un régime stationnaire équilibré avec les conditions hydrauliques appliquées. Un programme Éléments Finis couplés
        
        
          thermo-hydro-mécanique a été utilisé pour rétro-analyser, dans un premier temps, les paramètres de conductivité thermique et pour
        
        
          simuler, dans un deuxième temps, les résultats expérimentaux.
        
        
          KEYWORDS: heating cell, clay, thermal conductivity, back-analysis, experimental results, numerical simulation
        
        
          1 INTRODUCTION
        
        
          Thermal impact may play an important role on the behaviour of
        
        
          low-permeability saturated clayey host formations in connection
        
        
          with the design of a repository for ‘High-Level Radioactive
        
        
          Waste’. Boom Clay is currently the subject of extensive
        
        
          research on hydrothermal and mechanical phenomena that may
        
        
          possibly affect its performance as potential geological host
        
        
          formation.
        
        
          There are a number of laboratory results concerning the
        
        
          saturated hydro-mechanical behaviour of Boom Clay under a
        
        
          constant temperature field and studies on this area are described
        
        
          -to cite but a few of them- in De Bruyn (1999), Le (2008) and
        
        
          Lima (2011). Nevertheless, there is less information on clay
        
        
          hydro-mechanical response on heating and cooling paths under
        
        
          controlled small-scale laboratory condition.  To this end, the
        
        
          paper presents results from a comprehensive testing program
        
        
          performed on Boom Clay to determine thermal and hydraulic
        
        
          parameters using an axi-symmetric heating cell with
        
        
          measurement of temperature and pore pressure. Pore-pressure
        
        
          built-up and dissipation on fast heating pulse tests have been
        
        
          analysed using experimental results assisted by numerical
        
        
          simulations carried out with a coupled thermo-hydro-
        
        
          mechanical finite element code.
        
        
          2 EXPERIMENTAL SETUP AND TESTED MATERIAL
        
        
          Laboratory tests have been performed on Boom Clay (Mol,
        
        
          Belgium). Table 1 summarises the main properties of this
        
        
          Tertiary clay (20%-30% kaolinite, 20%-30% illite and 10%-
        
        
          20% smectite), which is slightly overconsolidated (Horseman
        
        
          
            et
          
        
        
          
            al
          
        
        
          . 1987, Coll 2005, Lima 2011).
        
        
          Figure 1 shows a scheme of a constant volume and axi-
        
        
          symmetric heating cell (Muñoz
        
        
          
            et al
          
        
        
          . 2009, Lima
        
        
          
            et al
          
        
        
          . 2010,
        
        
          Lima 2011), which has been used to perform heating pulse tests
        
        
          with controlled power supply and controlled hydraulic boundary
        
        
          conditions. Soil sample size is 75 mm in diameter and 100 mm
        
        
          high. A controlled-power heater (
        
        
          
            H
          
        
        
          in the figure) is installed
        
        
          along the axis of the sample in the lower part of the cell.
        
        
          Different transducers monitor the sample response, as shown in
        
        
          the figure: two miniature pore water pressure transducers (
        
        
          
            Pw
          
        
        
          
            1
          
        
        
          and
        
        
          
            Pw
          
        
        
          
            2
          
        
        
          ), and three thermocouples (
        
        
          
            T
          
        
        
          
            1
          
        
        
          ,
        
        
          
            T
          
        
        
          
            2
          
        
        
          and
        
        
          
            T
          
        
        
          
            3
          
        
        
          ). The cell is
        
        
          equipped with top and bottom valves to apply controlled
        
        
          hydraulic boundary conditions (
        
        
          
            u
          
        
        
          
            u
          
        
        
          and
        
        
          
            u
          
        
        
          
            b
          
        
        
          ). The heater with
        
        
          controlled power supply remains switched on for 24 hours
        
        
          during the heating stage and later it is switched off to perform
        
        
          the cooling phase.
        
        
          Table 1. Main properties of Boom Clay.
        
        
          Property
        
        
          Value
        
        
          Density,
        
        
          
        
        
          2.05  Mg/m
        
        
          3
        
        
          Dry density,
        
        
          
        
        
          
            d
          
        
        
          1.65 to 1.67 Mg/m
        
        
          3
        
        
          Gravimetric water content,
        
        
          w
        
        
          25 %
        
        
          Density of soil solids,
        
        
          
        
        
          
            s
          
        
        
          2.67 Mg/m
        
        
          3
        
        
          Void ratio,
        
        
          e
        
        
          0.60 to 0.62
        
        
          Degree of saturation,
        
        
          S
        
        
          r
        
        
          100 %
        
        
          Liquid limit,
        
        
          w
        
        
          L
        
        
          56
        
        
          Plastic limit,
        
        
          w
        
        
          P
        
        
          29
        
        
          Vertical water permeability at 20ºC,
        
        
          k
        
        
          wv
        
        
          2.3
        
        
          
        
        
          10
        
        
          -12
        
        
          m/s
        
        
          Vertical water permeability  at 80ºC,
        
        
          k
        
        
          wv
        
        
          6.5
        
        
          
        
        
          10
        
        
          -12
        
        
          m/s
        
        
          Horiz. water permeability at 20ºC,
        
        
          k
        
        
          wv
        
        
          4.5
        
        
          
        
        
          10
        
        
          -12
        
        
          m/s
        
        
          Small-strain shear modulus,
        
        
          G
        
        
          0
        
        
          347 MPa
        
        
          Poisson’s ratio,
        
        
          
        
        
          0.20