 
          3395
        
        
          An undrained upper bound solution for the face stability of tunnels reinforced by
        
        
          micropiles
        
        
          Une solution en limite supérieure non drainée pour la stabilité du front de tunnels renforcés par
        
        
          micropieux
        
        
          Pinyol N.M.
        
        
          
            Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE).
          
        
        
          
            Department of Geotechnical Engineering and Geo-Sciences. Universitat Politècnica de Catalunya (UPC)
          
        
        
          Alonso E.E.
        
        
          
            Department of Geotechnical Engineering and Geo-Sciences. Universitat Politècnica de Catalunya (UPC)
          
        
        
          ABSTRACT: Tunnel in difficult soils may require procedures to prevent tunnel face failures. Face stabilization can be achieved by
        
        
          the installation of some structural elements. This paper presents an analysis of face stability of shallow tunnels in undrained soils
        
        
          reinforced by an umbrella of subhorizontal micropiles. Upper bound solutions for two dimensional plane strain conditions are given
        
        
          including the effect of micropiles. The micropile umbrella is embedded in the soil and supported on the tunnel lining. The
        
        
          kinematically admissible collapse mechanism defined to calculate the upper bound solution includes the action provided by a
        
        
          subhorizontal micropile at limiting conditions. The solutions are given in practical dimensionless charts which are useful to quantify
        
        
          easily the effect of the umbrella of micropiles. The plots provide a simple procedure to design the umbrella. The most relevant
        
        
          properties defining the umbrella are grouped into a single dimensionless coefficient which includes the yielding conditions and the
        
        
          geometry of the micropiles as well as the distance between them.
        
        
          RÉSUMÉ : Les tunnels dans les sols difficiles peuvent nécessiter des procédés pour prévenir les ruptures du front du tunnel. La
        
        
          stabilisation du front peut être réalisée par l’installation de certains éléments structurels. Cet article présente une analyse de la stabilité
        
        
          du front dans des tunnels peu profonds en conditions non drainées renforcés par un parapluie de micropieux subhorizontaux. Des
        
        
          solutions de la limite supérieure pour des conditions bidimensionnelles de déformation plane sont présentées, y compris l’effet des
        
        
          micropieux. Le parapluie de micropieux est intégré dans le sol et soutenu sur le revêtement du tunnel. Le mécanisme de rupture
        
        
          cinématiquement admissible défini pour calculer la solution de la limite supérieure comprend la réponse prévue par un micropieu
        
        
          subhorizontal dans des conditions limites. Les solutions sont données dans des graphiques pratiques et sans dimensions qui
        
        
          fournissent une procédure simple de concevoir le parapluie. Les propriétés les plus pertinents qui définissent le parapluie sont
        
        
          regroupées en un seul coefficient sans dimension qui inclut les conditions de plastification et de la géométrie des micropieux, ainsi
        
        
          que la distance qui les sépare.
        
        
          KEYWORDS: Tunnel, face stability, micropiles, upper bound, plasticity, undrained strength.
        
        
          1 INTRODUCTION
        
        
          Tunnel in difficult soils may require procedures to prevent
        
        
          tunnel face failures. In tunnel excavated by means of boring
        
        
          machines, a pressure can be applied against the face to
        
        
          counteract water and earth pressure. Several publications
        
        
          provide procedures to calculate the pressure required for
        
        
          stability. Well known solutions given initially by Davis et al.
        
        
          (1980) offer practical dimensionless charts for shallow tunnels
        
        
          in cohesive materials based on plasticity theorems (upper and
        
        
          lower bound solutions). This contribution was followed by
        
        
          several authors that presented similar solutions for frictional
        
        
          materials (Leca and Dormieux 1990) or improved solutions by
        
        
          using limit equilibrium, finite difference and finite element
        
        
          methods (Lyamin and Sloan 2002a,b, Augarde et al. 2003,
        
        
          Vermeer et al. 2002, Klar et al. 2007, among others).
        
        
          Another calculation approach is to use Limit Equilibrium
        
        
          techniques (Anagnostou and Kovari 1996). They provide their
        
        
          results in terms of “bearing capacity” expressions. Finite
        
        
          Element and Distinct Element methods have been used
        
        
          extensively to examine face stability, in most cases under three
        
        
          dimensional conditions (Vermeer
        
        
          
            et al
          
        
        
          . 2002, Galli
        
        
          
            et al
          
        
        
          . 2003,
        
        
          Melis and Medina 2005). Among them, Vermeer
        
        
          
            et al.
          
        
        
          (2002)
        
        
          determined failure conditions of the face by means of a “
        
        
          
            c
          
        
        
          ,
        
        
          
        
        
          reduction method” and provided three dimensional solutions for
        
        
          the drained case.
        
        
          Face stabilization can also be achieved by the installation of
        
        
          some structural elements (bolts distributed in the front, concrete
        
        
          prevaults and umbrellas of micropiles). Several analysis of
        
        
          tunnel face stability taking into account the effect of a prevault
        
        
          and a reinforcement by bolts have been published (Peila et al.
        
        
          1996, Wong et al. 2000, Yoo and Shin 2003, Lignola et al.
        
        
          2008, 2010). However, limited attention has been paid to the
        
        
          reinforcement of tunnel faces by micropiles.
        
        
          This paper presents a stability analysis of tunnel faces
        
        
          including an umbrella of sub-horizontal micropiles. The
        
        
          micropiles are considered as beams subjected to the kinematic
        
        
          motion imposed by the assumed failure mechanism. The
        
        
          limiting resistance of the supporting beams is first addressed.
        
        
          The failure mechanism imposes a displacement pattern on the
        
        
          beam, which reacts applying a critical combination of normal
        
        
          and shear forces on the boundary of the sliding body. These
        
        
          limiting supporting forces are calculated by assuming a Von
        
        
          Mises yield criterion for the micropile material. Then, they are
        
        
          introduced into the general minimization process associated
        
        
          with the upper bound formulation. Stability conditions are
        
        
          described in terms of dimensionless parameters and plotted in
        
        
          ready to use design charts. In particular, a dimensionless
        
        
          Micropile Coefficient, which includes all the relevant design
        
        
          parameters of the umbrella, could be isolated and plotted in
        
        
          terms of undrained soil strength and tunnel geometry.
        
        
          2 UPPER BOUND SOLUTION INCLUDING
        
        
          SUBHORIZONTAL MICROPILES
        
        
          
            2.1 Collapse mechanism
          
        
        
          Consider the plane strain shallow circular tunnel of diameter
        
        
          
            D
          
        
        
          ,
        
        
          having a cover depth
        
        
          
            C
          
        
        
          , represented in Figure 1. The soil around
        
        
          the tunnel is characterized by its unit weight (
        
        
          
        
        
          ) and its
        
        
          undrained strength (
        
        
          
            c
          
        
        
          
            u
          
        
        
          ). A vertical stress,
        
        
          
        
        
          S
        
        
          , is applied on the
        
        
          soil surface. In order to prevent a potential failure of the front, a