 
          809
        
        
          The application of the Iwan soil model on a deep excavation
        
        
          L’application du modèle de sol d’Iwan sur une excavation profonde
        
        
          Sokolić I., Szavits-Nossan A.
        
        
          
            Faculty of Civil Engineering, University of Zagreb, CROATIA
          
        
        
          ABSTRACT: Based on the Iwan model, numerical simulations of well documented construction of anchored diaphragm wall
        
        
          supporting the 20 m deep excavation in Berlin sand were carried out. The model incorporates the critical state concept by using two
        
        
          sets of elastic-plastic elements, one set for the volumetric response, and the other for shear. The parameters for the model were
        
        
          derived from laboratory and in-situ tests on Berlin sand, and from data for some well tested sands (Erksak, Toyoura, Portaway,
        
        
          Ticino, Ottawa). The results show that the model is capable of describing well the observed behavior of the diaphragm wall in all
        
        
          construction stages. These results are compared with published results obtained by the advanced MIT-S1 model.
        
        
          RÉSUMÉ : Fondées
        
        
          sur le modèle d’Iwan, des simulations numériques de la construction bien documentée d'une paroi moulée
        
        
          ancrée, soutenant l'excavation de 20 m de profondeur dans le sable de Berlin, ont été effectuées. Le modèle incorpore les concepts de
        
        
          la
        
        
          mécanique des sols de l’état critique
        
        
          à l'aide de deux ensembles d’éléments élastoplastiques, un ensemble pour la réponse
        
        
          volumétrique, et l'autre pour le cisaillement. Les paramètres du modèle ont été obtenus à partir des essais en laboratoire et in situ sur
        
        
          le sable de Berlin, et en utilisant les données sur des sables bien testés (Erksak, Toyoura, Portaway, Tessin, Ottawa). Les résultats
        
        
          montrent que ce modèle est bien capable de retracer le comportement observé de la paroi moulée dans toutes les étapes de la
        
        
          construction. Ces résultats se comparent bien avec les résultats publiés obtenus en utilisant le modèle avancé MIT-S1
        
        
          .
        
        
          KEYWORDS: constitutive models, sand behavior, Iwan system, diaphragm wall, finite element analysis, critical state.
        
        
          1
        
        
          INTRODUCTION
        
        
          The parallel system of simple elastic-plastic elements,
        
        
          introduced by Iwan (1967) is very powerful tool for modeling
        
        
          the behavior of solid materials within the framework of
        
        
          continuum mechanics. The model is capable to trace almost any
        
        
          given stress-strain curve under steady straining and to account
        
        
          for unloading and reloading behavior without any extra rule. It
        
        
          also accounts for Masing’s rules for cycling loading (Masing,
        
        
          1926) even for irregular cycles. Based on results of triaxial
        
        
          testing of sands, the model is developed into generalized 3D
        
        
          effective stress soil model for sand. The model is calibrated and
        
        
          verified on some well tested sands (Erksak, Toyoura, Portaway,
        
        
          Ticino, Ottawa) showing the great capabilities to predict the
        
        
          complex sand behavior in wide range of stress, strain and
        
        
          densities and for different drainage conditions by using a simple
        
        
          set of soil parameters (Sokolić, 2010).
        
        
          In this paper the model is applied for simulating the
        
        
          performance of the support system for 20-m-mdeep excavation
        
        
          in Belin sand. The main goal was to validate the performance of
        
        
          the Iwan sand model used in complex numerical simulation, and
        
        
          to compare the results with published results obtained by using
        
        
          the advanced soil model MIT-S1 (Nikolinakou, 2011). The
        
        
          simple set of parameters for Berlin sand was derived by using
        
        
          the available results of laboratory and in-situ soil investigations
        
        
          together with interpretation of the results used in MIT-S1
        
        
          numerical analysis.
        
        
          2
        
        
          IWAN SOIL MODEL
        
        
          Iwan soil model consists of three characteristic units. The basic
        
        
          unit is Iwan three-dimensional spring-slider system that defines
        
        
          the development of elastic and plastic strains for any given 3D
        
        
          increment of strain. It is made of two separate Iwan systems
        
        
          (Figure 1) that distinguished shear from volumetric
        
        
          compression, which is often assumed in soil modeling (Colins
        
        
          et al. 2007). First Iwan system is used for modeling the shear
        
        
          behavior of sand in drained triaxial test (CID), while the second
        
        
          is used for the triaxial isotropic compression (ISO).
        
        
          Second unit of the model is the set of material functions which
        
        
          describes the characteristic behavior of sand observed in triaxial
        
        
          testing. Material functions are used to define the shape of
        
        
          backbone curves under steady shearing and compression for
        
        
          different
        
        
          
            ‘state of sand
          
        
        
          ’ (state of stress, strain and density). The
        
        
          backbone curves are used to calculate the strength and stiffness
        
        
          of each spring-slider element of 3D Iwan’s system, by using the
        
        
          pre-defined limit displacements of each element.
        
        
          a)
        
        
          b)
        
        
          Figure 1. One-dimensional Iwan distributed element model; a) parallel
        
        
          system of simple elastic-plastic elements; b) model response for primary
        
        
          loading and unloading