 
          2802
        
        
          Proceedings of the 18
        
        
          th
        
        
          International Conference on Soil Mechanics and Geotechnical Engineering, Paris 2013
        
        
          .
        
        
          
        
        
          
        
        
          
        
        
           
        
        
          
        
        
          (32)
        
        
          Some reference guiding values for the coefficient of variation of
        
        
          the geotechnical parameters are presented in Table 1.
        
        
          Table 1. Reference values of geotechnical properties of de soil.
        
        
          Parameter
        
        
          Coefficient of
        
        
          variation
        
        
          Specific weigh
        
        
          0.05
        
        
          Tangent of friction
        
        
          angle
        
        
          0.07
        
        
          Cohesion
        
        
          0.1
        
        
          Shear undrained
        
        
          resistance
        
        
          0.15
        
        
          In this way, it is possible to obtain the coefficient of variation of
        
        
          the load ( )
        
        
          
            p
          
        
        
          
        
        
          and the ultimate bearing capacity of the PR
        
        
          ,
        
        
          (
        
        
          
            PR ult
          
        
        
          
            Q
          
        
        
          )
        
        
          
        
        
          . With this and a defined safety level, the
        
        
          ,
        
        
          
            s o
          
        
        
          
            F
          
        
        
          can be
        
        
          calculated. Quevedo (2002) recommended to use a safety level
        
        
          , in the geotechnical designs by the ultimate limits
        
        
          states. It means a failure probability of 0.02.
        
        
          0,98
        
        
          
            H
          
        
        
          
        
        
          In order to know if the partial safety coefficients used in a
        
        
          specific design are appropriated, a comparison between
        
        
          ,
        
        
          
            s o
          
        
        
          
            F
          
        
        
          and
        
        
          ,
        
        
          
            s d
          
        
        
          
            F
          
        
        
          has to be done. Generally, the coefficients used in
        
        
          regular designs are conservative and they have to be calibrated
        
        
          to find one or more combinations that make
        
        
          ,
        
        
          
            s o
          
        
        
          
            F
          
        
        
          equal to
        
        
          ,
        
        
          
            s d
          
        
        
          
            F
          
        
        
          .
        
        
          In practice, because the variability of the load is lesser known,
        
        
          or measured, than the geotechnical parameters, it is better to
        
        
          reduce the weighting coefficient of the parameters of the soil.
        
        
          Also, it is easier for engineers to use the same weighted load for
        
        
          structures and foundations projects alike. Figure 2 shows the
        
        
          algorithm that resumes the method of calibration.
        
        
          Figure 2. Algorithm for obtaining safety factors by LEM (Lorenzo
        
        
          2010)
        
        
          5 CONCLUSIONS
        
        
          The cost of the (more) rational approach for the foundation
        
        
          design methods is the increase of the complexity level.
        
        
          Nevertheless, this cost is compensated by a proportional
        
        
          advantageous decrease of the execution costs. Besides, it will
        
        
          enhance the understanding of the design and yield a better
        
        
          assurance of its related variables. Thus, the use of the safety
        
        
          theory is the first step to obtain a more economical and rational
        
        
          design.
        
        
          The PRF analysis approach for a foundation system leads to an
        
        
          effective and optimized use of its components (Cunha et al.
        
        
          2001), as it allows the raft-soil contact contribution both in the
        
        
          overall stiffness and load capacity of the system. This analysis
        
        
          is a generalization of the calculation methods for determining
        
        
          the bearing capacities of raft and pile groups separately.
        
        
          Based on the method proposed by Sanctis & Mandolini (2006),
        
        
          a methodology for the application of the LEM in the design of
        
        
          PR was established. The use of three sets of partial coefficients
        
        
          allow to separately consider the uncertainties introduced in the
        
        
          design of the materials, the loads and the working conditions.
        
        
          By means of the methodology described by Quevedo (2002) it
        
        
          is possible to calibrate the partial safety coefficients which are
        
        
          necessary for the application of the LEM in the design of PRF
        
        
          systems. This makes it possible to better define and understand
        
        
          the safety level to be achieved in design.
        
        
          6 ACKNOWLEDGEMENTS
        
        
          The authors acknowledge the support of the National Brazilian
        
        
          Agency CNPq and the Geotechnical Graduation Prog. of the
        
        
          UnB for all related funds that allowed this particular research.
        
        
          7 REFERENCES
        
        
          Cunha, R.P., Poulos, H.G. and Small, J.C. (2001). “Investigation of
        
        
          design alternatives for a piled raft case history”. ASCE Journal of
        
        
          Geotechnical and Geoenvironmental Engineering, August, 127(8),
        
        
          pp. 635-641.
        
        
          Poulos, H.G. & Davis, E.H. (1980). “Pile Foundation Analysis and
        
        
          Design”. John Wiley & SonsEd., New York.
        
        
          Randolph, M. F. (1983). “Design of piled raft foundation”. Proc. Int.
        
        
          Symp. on Recent Developments in Laboratory and Field test and
        
        
          Analysis of Geotechnical Problems, Bangkok, pp. 525-537.
        
        
          Sales, M.M. (2000). “Análise do comportamento de sapatas
        
        
          estaqueadas”. Tese de doutorado, Publicação GTD/0022.
        
        
          Universidade de Brasília-DF, pp. 229.
        
        
          Carsten, A. & Dmitri, S. (1998). “Combined Piled-Raft Foundation
        
        
          (CBRF), Safety Concept”. Universitat Leizpig, pp. 13.
        
        
          Quevedo, G. (2002). “Aplicación de los Estados Límites y la teoría de la
        
        
          Seguridad en el Diseño Geotécnico en Cuba”. Tesis de Doctorado
        
        
          en Ciencias, UCLV, Santa Clara, pp.163.
        
        
          Eurocódigo 7. (2005). “Proyecto Geotécnico. Reglas generales”.
        
        
          European committee for standarization. Brussels, Bélgica, pp. 119.
        
        
          Caneiro J. H. (2003). “Apuntes para libro Diseño de Hormigón
        
        
          Estructural”. Instituto Superior Politécnico José Antonio
        
        
          Echeverria. La Habana. Cuba.
        
        
          Mandolini, A. (2003). “Design of piled raft foundations: practice and
        
        
          development”. Proc., Geotech. Int. Seminar Deep Foundation on
        
        
          Bored and Auger Piles, BAP IV, Van Impe and Haegeman, eds.,
        
        
          pp. 59–80.
        
        
          Sanctis de L. & Mandolini A., (2006). “Bearing Capacity of Piled Raft
        
        
          on Soft Clay Soils”.  Journal of Geotech. and Geoenvironmental
        
        
          Eng. vol. 132, no. 12 , pp. 11.
        
        
          Jiménez Salas, J.A.; Justo Alpañes, J. L.; Serrano, A. A. (1981)
        
        
          “Geotecnia y cimientos III : Mecánica del suelo y de las rocas.” 2da
        
        
          Edición. Madrid : Editorial Rueda, pp. 1188
        
        
          Randolph, M.F. (1994). “Design Methods for Pile Groups and Piled
        
        
          Rafts”. Proc. of the 13th Inter.Conf. on Soil Mechanics and Found.
        
        
          Eng. New Delhi. 5, pp. 1-21.
        
        
          Quevedo, G. (1987) “Aplicación del Método de los Estados Límites en
        
        
          el diseño de las cimentaciones superficiales”. Revista Ingeniería
        
        
          Estructural. 2(III), pp. 95 - 106.
        
        
          González - Cueto, A. V. (2000). “Diseño Geotécnico de Cimentaciones
        
        
          Superficiales en Arenas.” Tesis de Doctorado, Universidad Central
        
        
          de Las Villas, Santa Clara, pp. 133.
        
        
          Lima, R. (2006). “Diseño de cimentaciones sometidas a grandes
        
        
          esfuerzos de momentos y/o cortantes y axiales pequeños o de
        
        
          succión”. Tesis de Maestría. Univ. Central de Las Villas, pp. 99.
        
        
          Becker D. E. (1996). “Eighteenth Canadian Geotechnical Colloquium:
        
        
          Limit States Design for Foundations”. Part I. An overview of the
        
        
          foundation design process.” Canadian Geotechnical Journal 33, pp.
        
        
          956 – 983.
        
        
          Lorenzo, R. (2010). “Diseño Geotécnico de Losas Pilotadas. Aplicación
        
        
          de la Teoría de Seguridad”. Tesis de Maestría. CEDEX, Madrid,
        
        
          pp.123.
        
        
          CTE. (2006). “Código Técnico de la Edificación”. Ministerio de la
        
        
          Vivienda, España, 1061p.