 
          751
        
        
          3D Dynamic Numerical Modeling for Soil-Pile-Structure Interaction in Centrifuge
        
        
          Tests
        
        
          Modélisation numérique dynamique en 3D de l'interaction sol-pieu en centrifugeuse
        
        
          Kwon S.-Y., Kim M.-M.
        
        
          
            Seoul National University, Seoul, Republic of Korea
          
        
        
          Kim S.g-H.
        
        
          
            Ministry of Land, Transfer and Maritime Affairs, Seoul, Republic of Korea
          
        
        
          Choi J.-I
        
        
          
            University of California, Los Angeles, Los Angeles, CA, USA
          
        
        
          ABSTRACT: 3D dynamic analysis based on the finite difference method was performed, to simulate the dynamic behavior of a soil-
        
        
          pile-structure system under seismic loading, which was observed from dynamic centrifuge tests. For the centrifuge tests, model piles
        
        
          were placed in a so-called equivalent shear beam box. The acceleration time histories of 12 sine waves and 10 scaled earthquake
        
        
          events were used as input motions. The 3D numerical modeling was formulated in a time domain, to effectively simulate the
        
        
          nonlinear behavior of soil. As a modeling methodology, the soil medium was divided into near field and far field, the latter of which
        
        
          was not affected by soil-pile-structure interaction. The mesh was created only for the near field, to reduce the computing time. Far
        
        
          field response was applied as a boundary condition at the boundary of the near field. Soil nonlinearity was considered by adopting a
        
        
          hysteretic damping model and an interface model, which can simulate separation and slip between the soil and pile. The 3D modeling
        
        
          method was calibrated, by comparing the numerical modeling result with that of the dynamic centrifuge test. Finally, the 3D modeling
        
        
          method established in this research was evaluated, by comparing the numerical modeling results with those of other centrifuge tests.
        
        
          RÉSUMÉ : Une analyse 3D dynamique, fondée sur la méthode des différences finies, a été réalisée afin de simuler le comportement
        
        
          dynamique du système sol-pieu-structure sous chargement sismique qui a été observé d’essais dynamiques en centrifugeuse. Pour les
        
        
          essais en centrifugeuse, le pieu modèle était placé dans une « boîte de cisaillement pour poutre ». Les accélérogrammes de 12 vagues
        
        
          sinusoïdales et de 10 tremblements de terre ont été utilisés comme données de calcul. La modélisation numérique 3D a été formulée
        
        
          dans un domaine temporel pour simuler efficacement le comportement non linéaire du sol. Comme méthode de modélisation, le sol a
        
        
          été divisé en champ proche et en champ lointain, ce dernier n’étant pas affecté par l’interaction sol-pieu-structure. Le maillage a été
        
        
          créé seulement pour le champ proche afin de réduire le temps de calcul. La réponse du champ lointain a été appliquée comme
        
        
          condition à la limite du champ proche. La non-linéarité du sol a été considérée en adoptant un modèle d’amortissement hystérétique et
        
        
          un modèle d’interface qui peut simuler la séparation et le glissement entre le sol et le pieu. La méthode de modélisation 3D a été
        
        
          calibrée en comparant les résultats de la modélisation numérique avec les essais dynamiques en centrifugeuse. Enfin, la méthode de
        
        
          modélisation 3D établie dans cette recherche a été évaluée en comparant les résultats de la modélisation numérique avec les résultats
        
        
          d’autres essais en centrifugeuse.
        
        
          KEYWORDS: Centrifuge tests, Numerical analysis, Finite difference method, Dynamic soil-pile interaction
        
        
          1 INTRODUCTION
        
        
          Prediction of the behavior of pile foundations under strong
        
        
          earthquake loading is very important. Recently, the design
        
        
          procedure for evaluating pile behavior under strong earthquake
        
        
          loading has been modified, particularly after a series of mega-
        
        
          earthquakes, such as the Great East Japan (3/11) Earthquake.
        
        
          However, dynamic analysis of the soil-pile system is a very
        
        
          complicated procedure, different from the static case, and is
        
        
          affected by many factors, such as soil nonlinearity and dynamic
        
        
          soil-pile interaction.
        
        
          Many researchers have investigated the soil-pile-structure
        
        
          interaction (SPSI) effect on pile foundations (e.g. Kaynia and
        
        
          Kausel 1982, Dobry and Gazetas 1988, Markis and Gazetas
        
        
          1992, Klar and Frydman 2002, Martin and Chen 2005) in the
        
        
          frequency domain. However, analysis in the frequency domain
        
        
          is not straightforward, and requires the Fourier transformation
        
        
          for application. In addition, it is difficult to consider the
        
        
          nonlinearity of soil in this analysis. Therefore, seismic analysis
        
        
          in the time domain is an effective procedure to consider the
        
        
          nonlinearity that occurs during strong earthquake motion. 3D
        
        
          continuum modeling of the soil-pile system is one of the most
        
        
          accurate techniques among dynamic analysis methods, although
        
        
          this is difficult to apply, due to its complexity and lengthy
        
        
          analysis time.
        
        
          In this study, three-dimensional continuum modeling of the
        
        
          soil-pile system using the FDM (Finite Difference Method)
        
        
          program, FLAC-3D, was performed. The seismic responses of
        
        
          soil-pile-structure observed in centrifuge tests were compared,
        
        
          to calibrate and validate the applied 3D nonlinear FDM analysis.
        
        
          The analysis mainly focused on internal responses of the pile,
        
        
          such as peak bending moment of the pile foundation.
        
        
          2 CENTRIFUGE TESTS
        
        
          Dynamic centrifuge model tests(Yoo et al. 2012) were
        
        
          performed at a condition of 40g centrifugal acceleration, using
        
        
          the KOCED centrifuge at KAIST (the Korea Advanced Institute
        
        
          of Science and Technology). The tests evaluate the dynamic
        
        
          behavior of piles embedded in a model soil, which consists of a
        
        
          dry-dense sand layer. A typical test layout is presented in Fig. 1.
        
        
          The model soil consists of Jumunjin sand, with a relative
        
        
          density of 80%. The model container used for the centrifuge
        
        
          tests reported in this paper is the ESB (equivalent shear beam)
        
        
          box. The internal dimension of the ESB box is 50cm x 50cm x
        
        
          65cm. Model piles with a concentrated mass of 1.4kg were
        
        
          made with aluminum pipes, and fixed at the bottom of the ESB
        
        
          box, in order to simulate a rock-socketed pile. Strain gauges
        
        
          were attached on both sides of the pile according to depth, in