 
          1435
        
        
          Liquefaction impact revisited
        
        
          L'impact de la liquéfaction revisité
        
        
          Barends F.B.J.
        
        
          1, 2
        
        
          , Meijers P.
        
        
          1
        
        
          , Schenkeveld F.M.
        
        
          1
        
        
          , Weijers J.B.A.
        
        
          2, 3
        
        
          1
        
        
          
            Deltares,
          
        
        
          2
        
        
          
            TU Delft and
          
        
        
          3
        
        
          
            Rijkswaterstaat, The Netherlands
          
        
        
          ABSTRACT: Two aspects of liquefaction of carefully prepared partly loosely packed sand are tested: the intensity of a liquefaction
        
        
          trigger and the extent of induced excess pore water pressures when partly liquefaction occurs. The results of several 1D and 3D tests
        
        
          are shown. It appears that hardly any liquefaction happens when the trigger intensity is small. When yet partly liquefaction occurs,
        
        
          significant excess pore pressures arise also in the non-liquefied surroundings. These excess pore pressures slowly diminish during the
        
        
          sedimentation of the liquefied mass. The related densification itself, the porosity decrease, is however so small that the sand remains
        
        
          loose and the likelihood of a new liquefaction to occur due to subsequent new triggers remains. So, if the intensity of a trigger is small
        
        
          and the corresponding liquefied zone is limited, rigorous measures at great expenses are not required to guarantee e.g. stability of
        
        
          buildings and dikes. However, in case a trigger is intense and liquefaction zone is large, its destructive impact can be far reaching
        
        
          particularly due to the related excess pore pressures in a much wider area.
        
        
          RÉSUMÉ : Deux aspects de la liquéfaction des sables partiellement lâches sont testés: l’intensité du facteur déclenchant d’une
        
        
          liquéfaction et l’étendue des surpressions d’eau induites lorsqu’une liquéfaction partielle se produit. Les résultats de plusieurs essais
        
        
          1D et 3D sont présentés. Il semble que la liquéfaction est quasi inexistante lorsque l’intensité du facteur déclenchant est faible.
        
        
          Lorsque cependant une liquéfaction partielle se produit, d'importantes surpressions interstitielles apparaissent aussi dans les environs
        
        
          non liquéfiés. Ces excès de surpressions interstitielles diminuent relativement lentement au cours de la sédimentation de la masse
        
        
          liquéfiée. La densification elle-même, et la diminution de la porosité sont cependant si petites que le sable reste lâche et la probabilité
        
        
          d'une nouvelle liquéfaction demeure. Ainsi, si l’intensité du facteur déclenchant est petite et la zone de liquéfaction correspondante est
        
        
          limités, les mesures rigoureuses et coûteuses ne sont pas nécessaires pour garantir par exemple la stabilité des bâtiments et des digues.
        
        
          Cependent, dans le cas où le facteur déclenchant est fort et la zone de liquéfaction est grande, son impact destructeur peut être de
        
        
          grande envergure en particulier en raison des excès de surpressions interstitielles dans une zone bien plus large.
        
        
          KEYWORDS: sand, mud, density, liquefaction, diffusion, sedimentation, trigger, pore pressure.
        
        
          1 LIQUEFACTION.
        
        
          Sand deposits in lowlands and delta areas are usually loosely
        
        
          packed. Structures built on top may suffer from weakened
        
        
          support if these sands liquefy. The liquefaction of loosely
        
        
          packed sand is a research topic for many decades and several
        
        
          methods and models are developed. A crucial parameter is the
        
        
          local density (porosity or void ratio). The sensitivity of granular
        
        
          material becoming liquefied is expressed by the so-called
        
        
          liquefaction potential, which can be determined by special
        
        
          laboratory tests on samples from site at various manufactured
        
        
          densities. This counts for dynamic liquefaction (Barends &
        
        
          Ruygrok 1997) and for static liquefaction (Stoutjesdijk, de
        
        
          Groot & Lindenberg 1998). Laboratory results should then be
        
        
          calibrated with the in-situ characteristics  to determine the local
        
        
          likelihood of liquefaction. Unfortunately, local characteristics
        
        
          are difficult to measure.
        
        
          Under a critical loading, e.g. a trigger caused by dynamic
        
        
          shaking (Ishihara 1993) or a static slope slide (Stoutjesdijk e.a.
        
        
          1998; de Groot e.a. 2006), excess pore pressures will arise and
        
        
          when they reach the actual effective stress level, the granular
        
        
          structure changes into a mud, the state of liquefaction. The
        
        
          liquefied zone depends on the intensity of the trigger. Next, the
        
        
          sand restructures following a sedimentation, characterized by
        
        
          non-linear dispersion and consolidation (Pane & Schiffman
        
        
          1985). Particularly, fine loose sands are sensitive to this process.
        
        
          When sands are densely packed, negative pore pressures may
        
        
          arise. When the soil liquefies, it behaves like a heavy fluid that
        
        
          induces excess pore pressures into the surrounding soil, which
        
        
          thus may cause shear strength reduction in a much larger area.
        
        
          Some 1D tests and 3D tests have been performed and elaborated
        
        
          to investigate the effect of the intensity of the liquefaction
        
        
          trigger and the extent of induced excess pore pressures in the
        
        
          surroundings.
        
        
          2 EXCESS PORE PRESSURES AT LIQUEFACTION.
        
        
          2.1
        
        
          
            The process and effect of mud sedimentation
          
        
        
          In the laboratory, 1D sedimentation tests have been
        
        
          performed on fine saturated sand with some silt (
        
        
          
            d
          
        
        
          10
        
        
          ~ 60
        
        
          
        
        
          ),
        
        
          taken from lake IJssel in the Netherlands. A tube (51 cm high, 8
        
        
          cm diameter), shown in Figure 1a, is completely filled, covered
        
        
          and rotated 180 degrees, and put at rest in a vertical position
        
        
          while quickly uncovered, in order to simulate dumping this type
        
        
          of sand under water. During the subsequent sedimentation the
        
        
          actual pore water pressure is measured at two positions, at the
        
        
          bottom and half way, by sensors recordings sampled at 200 Hz.
        
        
          As observed, during the sedimentation, segregation of water and
        
        
          fines occurs. In this case, in about 7 minutes a loose sand
        
        
          column of 45 cm high is formed with on top a layer of expelled
        
        
          water (height 3 cm) and a layer of silt (height 2.5 cm).