 
          1011
        
        
          
            Proceedings of the 18
          
        
        
          
            th
          
        
        
          
            International Conference on Soil Mechanics and Geotechnical Engineering, Paris 2013
          
        
        
          SHEAR STRENGTH AND DEFORMATION OF METHANE HYDRATE BEARING
        
        
          SAND WITH FINES
        
        
          Résistance au cisaillement et déformation des sables avec des fines contenant
        
        
          de l’hydrate de
        
        
          méthane
        
        
          M. Hyodo, N. Yoshimoto & A. Kato
        
        
          
            Yamaguchi University, Ube, Japan
          
        
        
          J. Yoneda
        
        
          
            The National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
          
        
        
          ABSTRACT: A series of triaxial tests has been carried out to determine the mechanical properties and dissociation characteristics of
        
        
          sands with fines containing methane hydrate, using an innovative high pressure apparatus which has been developed to reproduce the
        
        
          in-situ conditions expected during proposed methane extraction methods. It was found that the strength of MH sand increased with
        
        
          MH saturation due to particle bonding and that the bonding effect was particularly dependent on the grain size of the host sand. A
        
        
          high pressure and low temperature plane strain testing apparatus was also developed for visualizing the deformation of methane
        
        
          hydrate bearing sand due to methane hydrate production. Using this testing apparatus, plane strain compression and methane hydrate
        
        
          dissociation by depressurization tests were performed with the measurement of localized deformation.
        
        
          RÉSUMÉ: Une série d'essais triaxiaux ont été effectués pour déterminer les propriétés mécaniques et les caractéristiques de
        
        
          dissociation des sables avec des fines contenant du hydrate de méthane (MH), en utilisant un appareil innovant de haute pression qui
        
        
          a été développé pour reproduire les conditions in-situ attendues pour des méthodes proposées d'extraction du méthane. Il a été
        
        
          constaté que la résistance du sable avec MH augmente avec la saturation du MH due au collage des particules et que l'effet de collage
        
        
          est particulièrement dépendant de la granulométrie du sable. Un appareil d'essai à haute pression et basse température en contraintes
        
        
          planes a aussi été développé pour la visualisation de la déformation du sable contenant des hydrates de méthane grâce à la production
        
        
          de méthane hydraté. En utilisant cet appareil, des essais de compression en contraintes planes et de dissociation des hydrates de
        
        
          méthane par dépressurisation ont été effectués avec la mesure de la déformation locale.
        
        
          KEYWORDS: metane hydrate, sand, fines,  temperature, high stress triaxial test, high stress plane strain test, local deformation
        
        
          1 INTRODUCTION
        
        
          Recently there has been much research into Methane
        
        
          Hydrate (referred to as MH hereafter) in the deep seabed as a
        
        
          developable material. In Japan, an MH rich layer was found in
        
        
          the Nankai Trough and production tests will be performed from
        
        
          2013 (MH21 Research Consortium, 2012). MH in the deep sea
        
        
          bed can exist at certain water pressure and temperature
        
        
          conditions. It exists in the pore space of the sand, bonding the
        
        
          sand particles. The MH rich layer is located around 100m-300m
        
        
          from the seabed, in deep seas with depths of over 1000m. As
        
        
          MH exists in uncemented sand sediments, there are many
        
        
          geotechnical-engineering related problems in order to confirm
        
        
          the stability of the production well and the grounds in its
        
        
          vicinity (Yamamoto. K. 2009). Hyodo, et al. (2008) developed
        
        
          temperature-controlled high-stress triaxial compression testing
        
        
          apparatus, and used this to perform a series of shear tests on not
        
        
          only undisturbed MH bearing sand samples from Nankai
        
        
          Trough, but also artificially produced MH in Toyoura sand to
        
        
          investigate the variation of shear strength due to cementation of
        
        
          MH. In this study, specimens of sand with fines were prepared
        
        
          to simulate the sediments in Nankai Trough and MH was
        
        
          produced with various degree of MH saturation in the
        
        
          specimens. A series of triaxial tests was performed and a newly
        
        
          developed high-stress plane strain shear testing apparatus with
        
        
          an observation window was used to investigate the global and
        
        
          local deformation of MH bearing sand.
        
        
          2   MATERIALS USED IN EXPERIMENTS
        
        
          Grain size distribution curves for samples from Nankai Trough
        
        
          and the simulation materials prepared in this study are shown in
        
        
          Figure 1. The sediments in Nankai Trough`s seabed soil
        
        
          constitute turbidite and show stratified layers with wide grain
        
        
          distribution curves, with contents ranging from sand to clay.
        
        
          The grain size distribution for the MH rich layer in Nankai
        
        
          Trough is shown in grey; it is mostly sand with fines content. In
        
        
          order to simulate the grain size distribution and minerals of this
        
        
          layer, silica sand, kaolin and mica were mixed and four kinds of
        
        
          simulated sands T
        
        
          a
        
        
          , T
        
        
          b
        
        
          , T
        
        
          c
        
        
          , T
        
        
          d
        
        
          were prepared as host sands. The
        
        
          fines content increases in order of T
        
        
          b
        
        
          , T
        
        
          a
        
        
          , T
        
        
          c
        
        
          , T
        
        
          d
        
        
          and the mean
        
        
          particle size decreases in order of T
        
        
          a
        
        
          , T
        
        
          b
        
        
          , T
        
        
          c
        
        
          , T
        
        
          d
        
        
          .
        
        
          3 SHEAR CHARACTERISTICS OF MH BEARING SANDS
        
        
          BY TEMPERATURE-CONTROLLED HIGH-STRESS
        
        
          TRIAXIAL TESTING
        
        
          Figure 1 Grain size distribution curves (Nankai trough and
        
        
          artificial samples)
        
        
          Shear Strength and Deformation of Methane Hydrate Bearing Sand with Fines
        
        
          Résistance au cisaillement et déformation des sables avec des fines contenant de l’hydrate de
        
        
          méthane
        
        
          Hyodo M., Yoshimoto N., Kato A.
        
        
          
            Yanaguchi Universit, Ube, Japan
          
        
        
          Yoneda J.
        
        
          
            The National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan