 
          1015
        
        
          A Simplified Contact Model for Sandy Grains Cemented with Methane Hydrate
        
        
          Un modèle simplifié pour les contacts entre grains de sable cimentés par hydrates de méthane
        
        
          Jiang M., Liu F., Zhu F., Xiao Y.
        
        
          
            Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
          
        
        
          
            Key Laboratory of Geotechnical and Underground Engineering (Tongji University), Ministry of Education, Shanghai
          
        
        
          
            200092, China
          
        
        
          ABSTRACT: Methane hydrates (MHs), regarded as one of the most promising future energies, extensively occupy the voids of soil
        
        
          deposits in permafrost regions and deep seabed. The presence of MH largely changes the macro-mechanical properties of the host
        
        
          deposits due to MH bonds among soils particles. This study introduces a new contact model for soil grains cemented by MH. This
        
        
          model was experimentally calibrated from two rods cemented by different materials. The bond failure criterion was then related to the
        
        
          strength properties of MH considering the effects of temperature, confining pressure, density and saturation of MH. The new model
        
        
          was implemented into a discrete element code to simulate the mechanical response of a MH bearing soil specimen subjected to biaxial
        
        
          loading conditions. The comparison between the simulation and experimental results shows that the new contact model can
        
        
          qualitatively capture the effects of MH cementation. Strain softening and shear dilation of soils cemented with MH become
        
        
          remarkable due to the presence of MH bonds. The cohesion of the MH bearing deposit substantially increases with the hydrate
        
        
          saturation, while the internal friction angle is less affected.
        
        
          RÉSUMÉ : Les hydrates de méthane (MH) sont considérés comme une source énergétique potentielle fondamentale pour le futur. Ils
        
        
          abondent dans les régions avec permafrost et sur les fonds marins profondes. Les MH influencent grandement les propretés macro-
        
        
          mécaniques des sols qui les contiennent en raison de liens qu’ils forment entre les particules des sols granulaires. Dans ce papier, on
        
        
          introduit un nouveau modèle pour les liens entre particules de sol cémentes par MH. Le modèle a été calibré utilisant des données
        
        
          expérimentales de pairs de barres métalliques (barres de Schneebeli) cimentées par diffèrent matériaux. Le critère de rupture pour les
        
        
          liens (bonds) a été corrélé aux paramètres de résistance au cisaillement des MH incluant les effets de la température, la pression de
        
        
          confinement, la densité et la saturation des MH. Le modèle a été implémenté dans un logiciel aux éléments discrets pour simuler la
        
        
          réponse mécanique des échantillons de sols contenant des MH chargés en conditions biaxiales. La comparaison entre les résultats
        
        
          expérimentaux et numériques montre que le nouveau modèle reproduit qualitativement les effets de la cimentation des liens MH. On a
        
        
          observé que les liens MH causent un adoucissement et dilatation remarquables. La cohésion et l’angle de frottement des sols
        
        
          contenant MH augmentent avec le dégrée de saturation des hydrates avec une augmentation plus significative pour la cohésion que
        
        
          pour l’angle de frottement.
        
        
          KEYWORDS: Methane hydrate bearing sands; bond; contact model; distinct element method; granular material
        
        
          1 INTRODUCTION
        
        
          As promissing resource of future energy, methane hydrates
        
        
          (MHs) are extensively found in voids of sediments situating in
        
        
          seabeds and permafrost regions at low temperatures and high
        
        
          pressures (e.g., Kvenvolden, 1988). They greatly enhances the
        
        
          strength of the host sediments. Moreover, MHs are prone to
        
        
          dissociation due to change in envrionmental conditions and
        
        
          human activities (e.g., installation offshore infrasturcutes).
        
        
          Serious geohazards such as marine landslides are likely
        
        
          triggered by instability of methane hydrate bearing sediments
        
        
          (MHBS). Unfortunately, the mechanism of these geo-hazards is
        
        
          poorly understood due to the lack of robust constitutive model
        
        
          of MHBS in addition to limited experimental data.
        
        
          A variety of influencing factors on mechanical properties of
        
        
          MHBS were investigated using special triaxial compression
        
        
          aparatus (Hyodo et al. 2005; Masui et al. 2005). In particular,
        
        
          the hydrate habit (i.e., the distribution of MHs in the pore scale)
        
        
          strongly affects properties of MHBS. For example, hydrates
        
        
          acting as inter-particle cementation cause larger strength and
        
        
          stiffness than pore-filling hydrates. It implies that hydrate habit
        
        
          should be featured in a robust constitutive model. However
        
        
          most models derived from laboratory tests at the macro scale are
        
        
          unable to build the connection between macroscopic properties
        
        
          of MHBS and micro structure of hydrate at the pore scale.
        
        
          In the contrast, the distinct element model (DEM) proposed
        
        
          by Cundall and Strack (1979) provides a solution for simulating
        
        
          hydrate habits at the grain scale. Waite et al., (2009) identified
        
        
          three habits: (1) pore filling with hydrates nucleating in the pore
        
        
          without bridging two or more soil grains together; (2) load
        
        
          bearing with hydrate bridging nearby soil grains and taking part
        
        
          in the strong force chains of the granular assembly; and (3)
        
        
          cementation with hydrates cementing at inter-particle contacts
        
        
          as illustrated in Fig. 1(a). The first type naturally turns into the
        
        
          second when the hydrate saturation exceeds 25-40%. Pore-
        
        
          filling hydrate has been successfully modeled by Brugada et al.
        
        
          (2010) and Jung et al. (2012) using DEM. However the model
        
        
          of cementation-type hydrate remains unsolved partially due to
        
        
          the difficulty in quantifying the strength of MH bonds. This
        
        
          constitutes the strong motivation of this paper. The objective of
        
        
          this study is to develop a suitable bond contact model for
        
        
          MHBS, which is of critical importance to produce meaningful
        
        
          macro-mechanical response of MHBS via DEM.
        
        
          2 A BOND CONTACT MODEL FOR MHBS
        
        
          2.1
        
        
          A conceptual bond contact model and laboratory data
        
        
          Fig. 1 shows a conceptual bond contact model (Jiang et al.
        
        
          2006) of two disks with radii
        
        
          R
        
        
          1
        
        
          and
        
        
          R
        
        
          2
        
        
          bonded at a finite width
        
        
          B
        
        
          and a central thickness
        
        
          t
        
        
          . A dimensionless parameter
        
        
          
        
        
          
        
        
          
        
        
          is
        
        
          defined in terms of common radius
        
        
          R
        
        
          =2
        
        
          R
        
        
          1
        
        
          R
        
        
          2
        
        
          /(
        
        
          R
        
        
          1
        
        
          +
        
        
          R
        
        
          2
        
        
          ):
        
        
          RB
        
        
          
        
        
          
        
        
          (1)