 
          2691
        
        
          Three Dimensional Finite Element Nonlinear Dynamic Analysis of Full-Scale Piles
        
        
          under Vertical Excitations
        
        
          Analyse dynamique non linéaire en 3D par éléments finis des pieux à grande échelle soumis
        
        
          à des vibrations verticales
        
        
          S. Biswas, B. Manna
        
        
          
            Research Scholar, Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi - 110016, India
          
        
        
          ABSTRACT: The present investigation emphasised on a comparative study between vertical vibration tests of full-scale single piles
        
        
          (length of 22 m and diameter of 0.45 m) with the three-dimensional (3-D) finite element (FE) analysis using Abaqus/CAE. A 3-D
        
        
          finite element model was developed to predict the nonlinear dynamic response of pile foundations in layered soil medium based on
        
        
          field data. First, the FE analysis was carried out for static load for the validation of the finite element model and the results were
        
        
          compared with the test results. Then, the vertical vibration analyses were conducted on the finite element model to determine the
        
        
          frequency-amplitude response of the pile and the FE results were compared with the vertical vibration test results of full-scale pile. It
        
        
          was found that the resonant frequency and amplitude obtained from the 3-D FE analysis were very close to the field test results of the
        
        
          full-scale single pile. Based on the FE analysis the variation of the soil-pile separation length with the depth was presented in this
        
        
          paper for different eccentric moments. It was found that the 3-D finite element model was found to be very efficient for the prediction
        
        
          of the nonlinear frequency-amplitude response considering complex nonlinear phenomena of soil-pile system in layered soil medium.
        
        
          RÉSUMÉ : La présente étude a mis l'accent sur une étude comparative entre les essais de vibrations verticales à grande échelle des
        
        
          pieux simples (longueur de 22 m et un diamètre de 0,45 m) à l’aide d’une analyse par élément finis (EF) à trois dimensions (3D) en
        
        
          utilisant Abaqus / CAE. Un modèle des éléments finis 3D a été développé pour prédire la réponse dynamique non linéaire des pieux
        
        
          dans les sols multicouches en utilisant les données in-situ. Tout d'abord, l'analyse par éléments finis a été réalisée pour la charge
        
        
          statique à fin de valider le modèle et les résultats ont été comparés avec les mesures in-situ. Ensuite, les analyses de vibrations
        
        
          verticales ont été modélisées  par éléments finis pour déterminer la réponse en fréquence d'amplitude du pieu et les résultats EF ont
        
        
          été comparés avec les résultats d'essais aux vibrations verticales des pieux à pleine échelle. Il a été constaté que la fréquence de
        
        
          résonance et l'amplitude obtenues à partir de l'analyse  ont été très proches des résultats des essais in-situ du pieu à pleine échelle. La
        
        
          variation de la longueur de la séparation sol-pieu avec la profondeur a été calculée dans ce papier pour différents moments
        
        
          excentriques. Il a été constaté que le modèle 3D est  très efficace pour la prédiction de la réponse de fréquence non linéaire-amplitude,
        
        
          compte tenu des phénomènes complexes non linéaires du système sol-pieu dans un milieu multicouches.
        
        
          KEYWORDS: Layered soils; Nonlinear response; Soil-pile separation; Vertical vibration; 3-D finite element analysis.
        
        
          1 INTRODUCTION
        
        
          Vibration of pile foundation from the operation of machine
        
        
          produces elastic waves within the soil mass. The determination
        
        
          of pile stiffness and damping parameters is an important step in
        
        
          the analysis of pile-supported structures subject to dynamic
        
        
          loading due to machinery and vibrating equipments etc. A key
        
        
          step to a successful design of the machine-pile foundation
        
        
          system is the careful engineering analysis of the pile foundation
        
        
          response to the dynamic loads from the anticipated operation of
        
        
          the machine. In recent years, a considerable amount of
        
        
          theoretical research has been accumulated in the area of
        
        
          dynamic behavior of piles, especially under linear elastic
        
        
          assumptions. On the other hand, the available literature on
        
        
          nonlinear soil-pile system subject to dynamic loading is limited.
        
        
          The finite element method (FEM) was appropriate to study
        
        
          the response analysis of the pile by considering the nonlinearity
        
        
          of the soil medium and separation at the pile-soil interface.
        
        
          Kuhlemeyer (1979) introduced the finite element results of soil-
        
        
          pile system by a simple lumped mass model. Then Dobry et al.
        
        
          (1982) made a parametric study (stiffness and damping
        
        
          coefficients) of the dynamic response of single pile. Lewis and
        
        
          Gonzalez (1985) was investigated the nonlinear soil response of
        
        
          soil-pile system and soil-pile gapping using FE analysis.
        
        
          Bentley and El Naggar (2000) developed a 3-D finite element
        
        
          model that considers the soil nonlinearity, discontinuity
        
        
          conditions at the soil-pile interface, energy dissipation, wave
        
        
          propagation, and actual in-situ stress conditions, to evaluate the
        
        
          kinematic soil-pile interaction. Maheshwari et al. (2004, 2005)
        
        
          studied the significance of nonlinearity of soil-pile system by a
        
        
          three dimensional finite element programme. Ayothiraman and
        
        
          Boominathan (2006) was performed two-dimensional analysis
        
        
          using Mohr-Coulomb soil model to determine the soil-pile
        
        
          response by FE software package, PLAXIS. Manna and Baidya
        
        
          (2009) used a simple axisymmetric two-dimensional finite-
        
        
          element model for the prediction of the dynamic response of
        
        
          full-scale single pile. It was observed that the finite-element
        
        
          model predicted the natural frequency and peak displacement
        
        
          amplitude of pile reasonably well.
        
        
          It can be concluded based on literature review that a very
        
        
          few studies are available to model of the full-scale pile-soil
        
        
          system using rigorous 3-D finite element model. Prediction of
        
        
          the boundary zone parameters and the soil-pile separation
        
        
          lengths are another key aspect of nonlinear response of pile
        
        
          foundation which has not been studied in details.Hence in the
        
        
          present study, the nonlinear response of the soil-pile system was
        
        
          investigated by a 3-D finite element package. Parametric study
        
        
          was performed based on the comparison between finite element
        
        
          analysis results and vertical vibration test results of full-scale
        
        
          single pile.
        
        
          Piles under Vertical Excitations
        
        
          Biswas S. Manna B.
        
        
          
            India