 
          3017
        
        
          
            Proceedings of the 18
          
        
        
          
            th
          
        
        
          
            International Conference on Soil Mechanics and Geotechnical Engineering, Paris 2013
          
        
        
          1
        
        
          Measurement of NAPL saturation distribution in whole domains by the Simplified
        
        
          Image Analysis Method
        
        
          Mesure de la distribution de la saturation de liquide en phase non-aqueuse couvrant tout le spectre
        
        
          de l’étude par la méthode simplifiée d’analyse d’image
        
        
          G. Flores
        
        
          
            Graduate School of Engineering, Kyoto University
          
        
        
          T. Katsumi, T. Inui & A. Takai
        
        
          
            Graduate School of Global Environmental Studies, Kyoto University
          
        
        
          ABSTRACT: A
        
        
          
            Simplified Image Analysis Method
          
        
        
          devised to assess the saturation distribution of water and
        
        
          
            Non-Aqueous Phase
          
        
        
          
            Liquids
          
        
        
          (NAPLs) in granular soils subject to fluctuating groundwater conditions was developed and tested for ten different NAPLs of
        
        
          different density and viscosity values
        
        
          (0.73 ≤
        
        
          ρ
        
        
          ≤ 1.20 g/cm
        
        
          3
        
        
          ; 1.4 ≤
        
        
          ν
        
        
          ≤ 1000 mPa∙s)
        
        
          . The
        
        
          
            Simplified Image Analysis Method
          
        
        
          , which is
        
        
          based on an extension of the
        
        
          
            Beer-Lambert Law of Transmittance
          
        
        
          that predicts the existence of a linear relationship between the
        
        
          saturation of water (
        
        
          
            S
          
        
        
          
            w
          
        
        
          ), NAPL (
        
        
          
            S
          
        
        
          
            o
          
        
        
          ), and their corresponding average optical densities (
        
        
          
            D
          
        
        
          
            i
          
        
        
          ), was tested by photographing samples of
        
        
          Toyoura sand mixed with different amounts of water and NAPLs, using two digital cameras with different wavelength band-pass
        
        
          filters (
        
        
          λ
        
        
          = 450 nm and 640 nm), and obtaining the linear equations relating
        
        
          
            S
          
        
        
          w
        
        
          ,
        
        
          
            S
          
        
        
          o
        
        
          and
        
        
          
            D
          
        
        
          i
        
        
          for the each NAPL. Once the linear
        
        
          relationships were confirmed, this method was used to assess the behavior of two different NAPLs subject to fluctuating groundwater
        
        
          tables, demonstrating that this
        
        
          
            non-intrusive
          
        
        
          and
        
        
          
            non-destructive
          
        
        
          method can be used as a reliable tool to provide water and NAPL
        
        
          saturation distributions in full domains, when studying the effects of porous soil contamination by NAPLs under dynamic conditions.
        
        
          RÉSUMÉ: Une
        
        
          méthode simplifiée d’analyse d’image
        
        
          visant à mesurer la distribution de la saturation d’eau et des
        
        
          
            liquides en phase
          
        
        
          
            non-aqueuse
          
        
        
          (NAPLs) des sols granuleux soumis aux fluctuations des eaux souterraines, a été développée et testée dans dix différents
        
        
          NAPLs (0.73≤
        
        
          ρ
        
        
          ≤1.20 g/cm
        
        
          3
        
        
          ; 1.4≤
        
        
          ν
        
        
          ≤1000 mPa∙s). La méthode simplifiée d’analyse d’image, une extension de la
        
        
          
            lois de Beer-Lambert
          
        
        
          qui établit une relation linéaire entre la saturation d’eau (
        
        
          
            S
          
        
        
          
            w
          
        
        
          ), de NAPL (
        
        
          
            S
          
        
        
          
            o
          
        
        
          ) et leurs densités optiques respectives (
        
        
          
            D
          
        
        
          
            i
          
        
        
          ), a été testée en
        
        
          photographiant à l’aide de de
        
        
          ux cameras digitales ayant des filtre passe-
        
        
          bande de longueur d’onde différente (
        
        
          λ
        
        
          = 450 nm et 640 nm)
        
        
          des échantillons de sable de Toyoura, mélangés avec des quantités différentes d’eau et des NAPLs, et en obtenant les équation
        
        
          s
        
        
          linéaires qui lient
        
        
          
            S
          
        
        
          
            w
          
        
        
          ,
        
        
          
            S
          
        
        
          
            o
          
        
        
          et
        
        
          
            D
          
        
        
          
            i
          
        
        
          à chacun de NAPL. Après confirmation de la relation linéaire, cette méthode a été utilisée pour évaluer
        
        
          le comportement de deux différents NAPLs soumis aux fluctuations des nappes phréatiques; et pour démontrer que cette méthode non
        
        
          intrusive et non
        
        
          destructive, peut être utilisée de manière fiable pour obtenir les distributions de saturation d’eau et de NAPL dans tout
        
        
          le spectre lors des explorations des effets de contamination des sols poreux par des NAPLs sous les conditions dynamiques.
        
        
          KEYWORDS: NAPL, simplified image analysis, saturation, optical density, column test
        
        
          1 INTRODUCTION
        
        
          When released in the vadose zone,
        
        
          
            Non-Aqueous Phase Liquids
          
        
        
          (NAPLs) pose significant contamination risks to the
        
        
          groundwater (Mercer and Cohen 1990; Capiro, Stafford et al.
        
        
          2007). Remediation of these releases in an efficient and cost-
        
        
          effective way should be guided by field data interpreted by
        
        
          numerical models using the appropriate assumptions
        
        
          (Kechavarzi, Soga et al. 2000). To verify the accuracy of these
        
        
          models, laboratory tests should be run and precise saturation
        
        
          information should be obtained, especially under the dynamic
        
        
          conditions usually present in nature (Lenhard and Parker 1987;
        
        
          Fagerlund, Illangasekare et al. 2007; Flores, Katsumi et al.
        
        
          2011). In this study, we aim to validate the
        
        
          
            Beer-Law of
          
        
        
          
            Transmittance
          
        
        
          , the basis of the
        
        
          
            Simplified Image Analysis
          
        
        
          
            Method
          
        
        
          for ten different NAPLs with different density and
        
        
          viscosity values, and then use this method to assess the behavior
        
        
          of five different NAPLs subject to fluctuating groundwater
        
        
          conditions, which may have a significant effect on the behavior
        
        
          of NAPLs, particularly with regards to their residual saturation.
        
        
          For this, residual saturation values at the end of drainage and
        
        
          imbibition stages will be compared for our different NAPLs.
        
        
          2 SIMPLIFIED IMAGE ANALYSIS METHOD
        
        
          The
        
        
          
            Beer-Lambert Law of Transmittance
          
        
        
          states that when a
        
        
          beam of monochromatic radiation
        
        
          
            I
          
        
        
          0
        
        
          strikes a block of absorbing
        
        
          matter perpendicular to a surface, after passing through a length
        
        
          
            b
          
        
        
          of the material, its power is decreased to
        
        
          
            I
          
        
        
          
            t
          
        
        
          as a result of
        
        
          absorption:
        
        
          (1)
        
        
          where
        
        
          
            D
          
        
        
          
            i
          
        
        
          is the optical density,
        
        
          ε
        
        
          a numerical constant,
        
        
          
            b
          
        
        
          the
        
        
          length of the path,
        
        
          
            c
          
        
        
          the number of moles per liter of absorbing
        
        
          solution,
        
        
          
            I
          
        
        
          o
        
        
          is the initial radiant power, and
        
        
          
            I
          
        
        
          
            t
          
        
        
          the transmitted
        
        
          power (Skoog et al. 2007). For digital images, the average
        
        
          optical density
        
        
          
            D
          
        
        
          
            i
          
        
        
          is defined for the reflected light intensity as:
        
        
          ∑
        
        
          ∑ (
        
        
          (
        
        
          ))
        
        
          (2)
        
        
          where
        
        
          
            N
          
        
        
          is the number of pixels contained in the area of interest
        
        
          and, for a given spectral band
        
        
          
            i
          
        
        
          ,
        
        
          
            d
          
        
        
          
            ji
          
        
        
          is the optical density of the
        
        
          individual pixels,
        
        
          
            I
          
        
        
          
            ji
          
        
        
          
            r
          
        
        
          is the intensity of the reflected light given
        
        
          by the individual pixel values, and
        
        
          
            I
          
        
        
          
            ji
          
        
        
          0
        
        
          is the intensity of the light
        
        
          that would be reflected by an ideal white surface (Kechavarzi et
        
        
          al. 2000).
        
        
          It has been shown (Flores et al. 2011) that the
        
        
          
            Beer-Lambert
          
        
        
          
            Law of Transmittance
          
        
        
          establishes a linear relationship between
        
        
          optical density and the concentration of a dye:
        
        
          (3)
        
        
          Flores G.
        
        
          Katsumi T. Inui T., Takai A.