 
          1183
        
        
          Mechanisms of Strength Loss during Wetting and Drying of Pierre Shale
        
        
          Mécanismes de la perte de force pendant
        
        
          h
        
        
          umidification et séchage de
        
        
          
            Pierre Shale
          
        
        
          Schaefer V.R.
        
        
          
            Iowa State University, Ames, Iowa USA
          
        
        
          Birchmier M.A.
        
        
          
            Soil Nail Launcher, Inc., Grand Junction, Colorado USA
          
        
        
          ABSTRACT: The physio-chemical and morphological role on the residual strength of Pierre Shale during wetting and drying cycles
        
        
          was investigated.  Ring-shear tests were conducted on intact and cycled material to assess the residual strength.  The mineralogy and
        
        
          chemistry were determined from x-ray diffraction and x-ray fluorescence results.  Minor mineralogical changes were observed during
        
        
          the cycling process.  The material degraded from a firm, dense shale to a massive, clayey material after three to four cycles.  Gypsum
        
        
          concentrations decreased during the wet-dry cycles.  The low residual friction angles of 6.1 to 6.8 degrees decreased an additional 0.8
        
        
          to 1.4 degrees during the wet-dry cycles. A significant fabric contrast was apparent after three cycles as the material’s structure
        
        
          became more massive. The material with higher amounts of montmorillonite in the mixed-layer clay mineral showed little change in
        
        
          the liquid limits with cycling, in contrast to the illite materials.  A decrease in residual strength was observed for the first two wet-dry
        
        
          cycles, but little change for successive wet-dry cycles. The results suggest the disintegration of particles during slaking is the main
        
        
          determinate of strength loss.  The initial mineralogy was also observed to be a factor on the slaking rate and the residual strength
        
        
          behavior.
        
        
          RÉSUMÉ : Le rôle physio-chimique et  morphologique sur la résistance résiduelle de
        
        
          
            Pierre Shale
          
        
        
          au cours des cycles de mouillage et
        
        
          de séchage a été étudié . Les essais de cisaillement annulaires ont été effectués sur  ce matériau intact et recyclé pour évaluer sa
        
        
          résistance résiduelle. La minéralogie et la chimie ont été  étudiées à partir de diffraction des rayons X et de rayons X de fluorescence.
        
        
          Des modifications minéralogiques mineures ont été observées au cours des cycles hydriques. .  Le schiste dense a subi une
        
        
          dégradation après 3 à 4 cycles et  a été transformé en une argile. La concentration en gypse a également été diminuée. Les faibles
        
        
          angles de frottement interne résiduels de 6,1 à 6,8 degrés  ont diminué d’environ 0,8 à 1,4 degrés supplémentaires au cours des cycles
        
        
          de mouillage-séchage. Une modification importante de la structure interne et une densification ont été notées   après trois cycles. Les
        
        
          limites de liquidité du matériau avec un pourcentage élevé de   montmorillonite n’ont pas été modifiées contrairement au matériau
        
        
          contenant de l’illite. Une diminution de la résistance résiduelle a été observée pour les deux premiers cycles hydriques, mais peu de
        
        
          changement a été observé pour des cycles ultérieurs de mouillage-séchage. Les résultats suggèrent que la désintégration des particules
        
        
          pendant l’humidification est la principale cause de perte de résistance. La minéralogie initiale a également été considérée comme un
        
        
          facteur important influençant cette désintégration et   la résistance résiduelle.
        
        
          KEYWORDS: Shale, weathering, strength, clay mineralogy, residual friction angle
        
        
          1 INTRODUCTION
        
        
          The tendency for clay shales to weather, soften, and slake upon
        
        
          drying and rewetting has been well documented.  The
        
        
          degradation causes the material to soften and lose strength,
        
        
          possibly leading to slope failures.  Skempton (1964) noted
        
        
          strength losses of up to 80% in some deposits after softening.
        
        
          The slaking rate has been observed to be dependent on the
        
        
          mineralogy and physico-chemical behavior, especially in
        
        
          materials with high activity clay minerals (Perry and Andrews
        
        
          1984).  While the mineralogy mechanisms are well known, very
        
        
          few studies on clay shales have been conducted to analyze the
        
        
          role of physico-chemical occurrences on the strength loss.
        
        
          Weathering in overconsolidated clays and clay shales has
        
        
          been observed to be a significant process due to the mode of
        
        
          deposition and the bonding from diagenesis, especially in
        
        
          outcroppings.  One of the largest and most problematic clay
        
        
          shales in the United States is the Pierre Shale Formation
        
        
          (Fleming
        
        
          
            et al
          
        
        
          . 1970).  The drop in strength from the peak to
        
        
          residual strength is a source of the stability problems associated
        
        
          with these materials.  Initial fissuring results from rebound in
        
        
          clay shales and leads to clay swelling, strain softening and
        
        
          weathering (Brooker and Peck 1993).  Much of the past work on
        
        
          residual strength has focused on the mechanical aspects with
        
        
          less emphasis on the role of the more dynamic, physico-
        
        
          chemical effects on residual strength.
        
        
          This paper reports the results of tests conducted to relate the
        
        
          strength of a series of laboratory wetting and drying cycles on
        
        
          unweathered Pierre Shale to its chemistry, mineralogy, and
        
        
          micromorphology.  The study analyzes the role of the initial
        
        
          mineralogy, breakdown of particle size, and the overall changes
        
        
          in the mineralogy.
        
        
          1 MATERIALS AND METHODS
        
        
          1.1
        
        
          
            Materials
          
        
        
          As described by Bjerrum (1967), the behavior of
        
        
          overconsolidated materials is strongly correlated to their
        
        
          geologic history.  Pierre Shale is a heavily overconsolidated
        
        
          clay shale formed from a marine/non-marine environment
        
        
          sedimentation during the Cretaceous Period approximately 60 to
        
        
          80 million years ago (Fleming
        
        
          
            et al.
          
        
        
          1970).  The formation
        
        
          extends throughout Canada and as far south as the Gulf of
        
        
          Mexico. Significant slope failures have been observed
        
        
          throughout the formation, but are mainly focused in the upper
        
        
          Missouri and South Saskatchewan River basins. The