 
          1187
        
        
          Effect of confining stress on the transient hydration of unsaturated GCLs
        
        
          Effet de la contrainte de confinement sur l'hydratation transitoire de GCLs insaturés
        
        
          Siemens G.A., Take W.A., Rowe R.K., Brachman R.
        
        
          
            GeoEngineering Centre at Queen’s-RMC, Queen’s University, Kingston, Canada
          
        
        
          ABSTRACT: Geosynthetic clay liners (GCLs) are often used within composite landfill liner systems in combination with a
        
        
          geomembrane to provide an effective barrier.  In order for the GCL to function as a barrier, however, it must hydrate from its initially
        
        
          low moisture content.  With the geomembrane above the GCL limiting moisture uptake from the surface, the GCL must hydrate by
        
        
          taking moisture from the foundation soil below.  Numerical simulations of hydration showed that in an isothermal closed system, the
        
        
          foundation soil sets the suction value towards which the GCL migrates. In this paper the impact of normal stress on the rate of
        
        
          hydration and equilibrium moisture content is investigated numerically.  The laboratory tests were completed with 2 kPa normal
        
        
          stress, however, in a landfill, GCL hydration could occur at significantly higher normal stresses.  Therefore the question arises
        
        
          whether additional normal stress will aid or hinder GCL hydration.  The results showed the impact of normal stress is to constrain
        
        
          swelling of the GCL which will reduce the equilibrium moisture content as well as reduce the time to achieve equilibrium.  This
        
        
          provides additional motivation to cover the composite barrier system in a timely manner within the construction process.
        
        
          RÉSUMÉ : Les géosynthétiques bentonitiques (GSB) sont souvent utilisés en combinaison avec une géomembrane dans la conception
        
        
          des sites d'enfouissement pour fournir une barrière étanche. Pour assurer sa fonction d’étanchéité, un GSB doit s’hydrater suite à
        
        
          l’installation puisqu’il possède un faible taux d’humidité initial. La géomembrane qui recouvre le GSB limite la reprise d'humidité du
        
        
          GSB. L'hydratation doit donc se faire en utilisant l'humidité du sol au-dessous de la barrière. Des simulations numériques de
        
        
          l’hydratation ont démontré que dans un système fermé isotherme, le sol de fondation fixe la valeur de succion vers laquelle l’humidité
        
        
          migre vers le GSB. Dans cet article, les effets de la contrainte normale sur la vitesse d'hydratation et sur la teneur en humidité à
        
        
          l'équilibre sont étudiés numériquement. Les essais en laboratoire ont été réalisés avec une contrainte normale de 2 kPa. Cependant,
        
        
          dans un site d'enfouissement, l'hydratation du GSB pourrait se produire à des contraintes normales beaucoup plus élevées. Les
        
        
          résultats ont montré que l'impact de la contrainte normale est de contraindre le gonflement du GSB, ce qui réduira la teneur en
        
        
          humidité à l’état d’équilibre ainsi que le temps nécessaire pour atteindre l’état d’équilibre.
        
        
          KEYWORDS: Geosynthetic clay liner, hydration, numerical simulations, parametric study, landfill, barrier systems
        
        
          1 INTRODUCTION
        
        
          Geosynthetic clay liners (GCLs) are often used in combination
        
        
          with a geomembrane (GMB) as a composite landfill liner
        
        
          system.  For a GCL to function as a hydraulic barrier, however,
        
        
          it must hydrate from its initially low moisture content. The
        
        
          source of this moisture cannot be from the atmosphere as the
        
        
          GMB barrier is installed on top of the GCL. Instead, a GCL
        
        
          must hydrate with moisture from the foundation soil below the
        
        
          GCL. This is not to say that the GMB does not play a
        
        
          significant role in defining the hydration behaviour of a GCL. If
        
        
          the surface of the GMB is left exposed to solar radiation during
        
        
          construction of the landfill liner, peak daily temperatures have
        
        
          been observed in the range of 60-75 °C for black GMBs (Pelte
        
        
          et al. 1994;  Chappel et al., 2012; Rowe et al., 2012). These
        
        
          daily thermal cycles have been shown in the laboratory to
        
        
          suppress the ability of GCLs to significantly hydrate (Rowe et
        
        
          al. 2011).
        
        
          If best practice is followed and the GMB is covered in a timely
        
        
          fashion with a granular protection layer or leachate collection
        
        
          system, the combination of a lack of direct contact with solar
        
        
          radiation and the thermal insulation provided by these layers of
        
        
          granular material will result in a much less severe thermal
        
        
          regime allowing GCL hydration to occur. Because these layers
        
        
          are designed to be as thin as possible (i.e. maximising landfill
        
        
          volume), GCL hydration in this scenario could be viewed as
        
        
          occurring under low confining stresses and relatively isothermal
        
        
          conditions. Research quantifying the rate of GCL hydration
        
        
          under these conditions was performed by Rayhani et al. (2011)
        
        
          which showed that GCLs readily hydrate from the subsoil under
        
        
          these conditions with the rate of hydration and final equilibrium
        
        
          water content of the GCL varying on the initial moisture content
        
        
          of the foundation soil.
        
        
          The key to quantifying the moisture uptake and retention
        
        
          behaviour of GCLs is the material’s unsaturated water retention
        
        
          curve (WRC). The water retention behaviour of GCLs at low
        
        
          confining stresses has recently been quantified using
        
        
          measurements of GCL suction using high capacity tensiometers
        
        
          and relative humidity sensors (Beddoe et al., 2010) for four
        
        
          geotextile-encased GCLs containing granular bentonite (Beddoe
        
        
          et al., 2011). The results of this study have indicated that the
        
        
          method of GCL manufacture, in particular the presence or
        
        
          absence of a scrim reinforced nonwoven carrier geotextile and
        
        
          thermal treatment, can have a significant impact on the water
        
        
          retention behaviour of GCLs. Using the water retention curves
        
        
          (WRCs) defined by Beddoe et al. (2011), Siemens et al. (2012)
        
        
          performed an unsaturated numerical modelling parametric study
        
        
          of the experimental isothermal hydration experiments of
        
        
          Rayhani et al. (2011). The results of this analysis are shown
        
        
          schematically in Figure 1. The underlying foundation soil was
        
        
          observed to act as a suction boundary condition. As a result, the
        
        
          soil followed a drying path, whereas the GCL followed its
        
        
          wetting path until an equilibrium suction value was reached.
        
        
          Due to the relatively small mass of water required to hydrate the
        
        
          GCL compared to the mass of moisture held in the soil column,
        
        
          the equilibrium suction value was observed to be that
        
        
          represented by the foundation soil’s initial moisture content.