738
Proceedings of the 18
th
International Conference on Soil Mechanics and Geotechnical Engineering, Paris 2013
conditions, e.g. drained or undrained, flexible or rigid (Pépin et
al. 2012).
The cyclic simple shear testing and shaking table testing
were modeled numerically to verify and calibrate a constitutive
numerical model used to simulate the dynamic behavior of
tailings (James 2009).
Large-scale laboratory testing of the interaction between
tailings and waste rock inclusions with respect to infiltration
and drainage capacity and the potential for clogging is in
progress.
An actual impoundment with WRI is being monitored to
assess its response following tailings deposition.
9 CLOSURE
Waste rock inclusions can provide a number of environmental
and geotechnical benefits and are a viable option in the
sustainable development and operation of mining facilities.
Ongoing work is underway to further validate the concept and
the results presented here.
10 ACKNOWLEDGEMENTS
The authors gratefully acknowledge the support of the Industrial
NSERC Polytechnique-UQAT Chair in Environment and Mine
Wastes Management.
11 REFERENCES
Adalier, K., Elgamal, A., Meneses, J., & Baez J. I. (2003). Stone
Columns as Liquefaction Countermeasure in Non-plastic Silty
Soils. Soil Dynamics and Earthquake Engineering, 571-584.
Aubertin, M. Mbonimpa, M., Jolette, D., Bussière, B., Chapuis, R.P.,
James, and Riffon, O. 2002. Stabilité géotechnique des ouvrages de
retenue pour les résidus miniers: Problèmes persistants et méthodes
de contrôle. Défis & Perspectives: Symposium 2002 sur
l'environnement et les mines, Rouyn-Noranda, CIM. Proceedings
on CD-ROM.
Azam, S., Li, Q. (2010). Talings dam failures : A review of the last one
hundred years. Geotechnical News. Vol. 28, no 4, pp. 50-54.
Bolduc, F. L. (2012). UNE ÉTUDE SUR L’UTILISATION DES
ROCHES STÉRILES COMME INCLUSIONS DRAINANTES
DANS LES RÉSIDUS MINIERS M.Sc. thesis, École
Polytechnique de Montréal, Canada.
Bussiere, B. (2007). Hydro-Geotechnical Properties of Hard Rock
Tailings from Metal Mines and Emerging Geo-environmental
Disposal Approaches. Canadian Geotechnical Journal, 44(9), 1019-
1052.
Gamache-Rochette, A. (2004). Une étude de caraterisation en
laboratoire et sur le terrain des ecoulements de l'eau dans les roches
steriles. M.Sc. Thesis. Ecole Polytechnique de Montréal, Canada.
Ishihara, K. (1984). Post-Earthquake Failure of a Tailings Dam due to
Liquefaction of the Pond Deposit. Proceedings of the International
Conference on Case Histories in Geotechnical Engineering, St-
Louis USA, (pp. 1129-1143). New York: ASCE.
International Commission on Large Dams (ICOLD). (2001). Tailings
Dams – Risk of Dangerous Occurrences – Lessons Learnt From
Past Experiences. Bulletin No. 121. Commission Internationale des
Grands Barrages, Paris.
James, M. 2009. The Use of Waste Rock Inclusions to Control the
effects of Liquefaction in Tailings Impoundments. Ph.D. thesis,
Department of Civil, Geological, and Mining Engineering, Ecole
Polytechnique, Montreal, Canada.Jaouhar E. M. 2012. On the use
of waste rock to accelerate the consolidation of tailings. M.Sc.
thesis, École Polytechnique de Montréal, Canada.
Pépin, N., Aubertin, M., James, M. (2012) A seismic table investigation
of the effect of inclusions on the cyclic behaviour of tailings.
Canadian Geotechnical Journal 49(4): 416-426.
Poncelet, N.. 2012. Élaboration et implémentation d’un protocole de
laboratoire pour l’étude de potentiel de liquéfaction de résidus
miniers. M.Sc. Thesis, École Polytechnique de Montréal, Canada.