2347
        
        
          Numerical investigation of dynamic embedment of offshore pipelines
        
        
          Étude numérique de l’ancrage dynamique de conduites enterrées maritimes
        
        
          Dutta S., Hawlader B.
        
        
          
            Memorial University,
          
        
        
          
            St. John’s, Canada.
          
        
        
          Phillips R.
        
        
          
            C-CORE,
          
        
        
          
            St. John’s, Canada.
          
        
        
          ABSTRACT: Pipelines are one of the key components of offshore oil and gas development programs. Deep water pipelines are often
        
        
          laid on the seabed and penetrate into soil a fraction of their diameter. High operating temperature and pressure generate axial stress
        
        
          that could buckle the pipeline laterally. The embedment and formation of soil berm have a significant effect on lateral resistance. The
        
        
          embedment of a pipeline depends on stress concentration at the touchdown point (TDP) and dynamic laying effects. In this study,
        
        
          large deformation finite element modelling of dynamic penetration of offshore pipeline is presented. The Coupled Eulerain
        
        
          Lagrangian (CEL) technique is used to develop finite element model. The pipe is first penetrated into the seabed followed by a small
        
        
          amplitude cyclic lateral motion. Results from the finite element models are compared with centrifuge test results. High plastic shear
        
        
          strain is obtained around the pipeline during cyclic loading which causes significant pipe embedment. The shape of soil berm is
        
        
          different from that of monotonic pipe penetration.
        
        
          RÉSUMÉ : Les conduites enterrées sont un des éléments clés des programmes de développement de pétrole et de gaz. Des conduites
        
        
          enterrées en eau profonde sont souvent mises sur le plancher océanique et pénètrent dans le sol sur une fraction de leur diamètre. La
        
        
          température et la pression de fonctionnement élevées génèrent une contrainte axiale qui peuvent déformer la conduite latéralement.
        
        
          L'ancrage et le sol encaissant ont un effet significatif sur la résistance latérale. L'enfouissement d'une conduite dépend des
        
        
          concentrations de contraintes et des effets dynamiques de la pose. Dans cette étude, une modélisation par éléments finis en grande
        
        
          déformation de la pénétration dynamique de la conduite est présentée. Une technique de type Eulérien Lagrangien (CEL) est utilisée
        
        
          pour développer le modèle éléments finis. Le tuyau est d'abord mis en place dans le fond marin puis subit un mouvement cyclique de
        
        
          faible amplitude latérale. Les résultats des modèles éléments finis sont comparés avec les résultats d’essais en centrifugeuses.
        
        
          D’importantes valeurs de la déformation plastique sont obtenues autour de la canalisation lors du chargement cyclique ce qui
        
        
          nécessite un ancrage suffisant de la conduite. La forme du sol encaissant est différente de celle du tuyau mis en place statiquement.
        
        
          KEYWORDS: pipelines, dynamic embedment, clay, large deformation analysis.
        
        
          1 INTRODUCTION
        
        
          As-laid pipelines are commonly used in deepwater. During
        
        
          installation the as-laid pipeline could be penetrated a fraction of
        
        
          its diameter into the seabed (Bruton et al. 2006), and a soil berm
        
        
          could be formed. The soil around the pipelines provides not
        
        
          only the thermal insulation and hydrodynamic stability to the
        
        
          pipe but also resistance to pipeline walking and lateral buckling
        
        
          during high operating temperature and pressure. Accurate
        
        
          assessment of as-laid pipe embedment is extremely difficult.
        
        
          Depending upon sea state, vessel conditions, pipe stiffness and
        
        
          soil conditions, the pipeline might experience both in-plane and
        
        
          out-of-plane cyclic motion during installation (Westgate et al.
        
        
          2010, 2012), which causes dynamic embedment of the pipeline.
        
        
          The penetration of a pipeline under static load can be
        
        
          obtained using bearing capacity theory, analytical solution or
        
        
          finite element techniques. In the current engineering practice,
        
        
          two additional factors are used to estimate the embedment of
        
        
          pipelines: (a) additional vertical force near the TDP (the point
        
        
          where the pipe first touches the soil) due to catenary effects and
        
        
          (b) dynamic lay effects. A number of methods have been
        
        
          proposed in the past to estimate these factors (Carneiro et al.
        
        
          2010, Oliphant and Yun 2011). For example, Randolph and
        
        
          White (2008) proposed an empirical equation to calculate the
        
        
          touchdown lay factor (
        
        
          
            f
          
        
        
          
            lay
          
        
        
          ) using pipe submerged weight,
        
        
          bending rigidity, horizontal component of effective tension, lay
        
        
          angle, water depth and seabed stiffness. The embedment factor
        
        
          for dynamic lay effects (
        
        
          
            f
          
        
        
          
            dyn
          
        
        
          ) varies between 2 and 10 (Lund
        
        
          2000, Bruton et al. 2006). This wide range of variation in this
        
        
          factor makes the assessment of pipe embedment very difficult.
        
        
          During installation, both vertical and lateral pipe motions
        
        
          can soften the seabed soil near the pipe. Soil
        
        
          softening/remolding together with water entrainment can reduce
        
        
          the undrained shear strength of soil. Field observation
        
        
          (Westgate et al. 2010) and physical modeling using
        
        
          geotechnical centrifuge (Cheuk and White 2011) show that the
        
        
          horizontal cyclic motion, although small amplitude, has a
        
        
          significant effect on pipe embedment.
        
        
          The main purpose of this study is to conduct large
        
        
          deformation finite element (FE) analysis for dynamic events
        
        
          during the installation of pipeline. Coupled Eulerian Lagrangian
        
        
          (CEL) technique is adopted in the analysis using ABAQUS FE
        
        
          software. Four FE models are developed for two different soils:
        
        
          kaolin and high plasticity clays (plasticity index for kaolin is 34
        
        
          and for high plastic clay is 100-130, Cheuk and White 2011).
        
        
          The results are compared with the centrifuge test results
        
        
          vailable in the literature.
        
        
          a
        
        
          2 PROBLEM DEFINITION.
        
        
          The problem considered in the present finite element (FE)
        
        
          modelling is shown in Fig.1. During laying, offshore pipelines
        
        
          usually penetrate vertically into the seabed due to its self-weight
        
        
          and catenary effect near the touchdown zone (TDZ). The vessel
        
        
          movement from wave loading could cause small amplitude
        
        
          cyclic motions in the
        
        
          
            x
          
        
        
          -direction. As the pipeline is under a
        
        
          vertical load (
        
        
          
            p
          
        
        
          0
        
        
          ), the lateral movement in the
        
        
          
            x
          
        
        
          -direction could
        
        
          cause additional vertical penetration as shown by Stage-II and
        
        
          III in Fig. 1.