 
          1385
        
        
          Characterization of Soil-Geosynthetic Interaction under Small Displacements
        
        
          Conditions
        
        
          Caractérisation de l'Interaction sol-géosynthétique sous des conditions de petits déplacements
        
        
          Zornberg J.G., Roodi G.H., Ferreira J.
        
        
          
            The University of Texas at Austin, Austin, Texas, USA
          
        
        
          Gupta R.
        
        
          
            Geosyntec Consultants, Columbia MD, USA
          
        
        
          ABSTRACT: While ultimate failure governs the performance of some geosynthetic-reinforced systems (e.g. reinforced walls), the
        
        
          small displacement response governs the behavior of geosynthetic-reinforced pavement systems. Yet, quantification and
        
        
          characterization of the effectiveness of geosynthetic products under small displacement conditions has been limited. The purpose of
        
        
          this study is to develop a soil-geosynthetic interaction model that captures the stiffness of the soil-geosynthetic interaction under small
        
        
          displacement conditions. The proposed model assumes: (1) a linear relationship between the axial strain of the confined reinforcement
        
        
          and its unit tension, and (2) a uniform soil-geosynthetic interface shear over the active length of the geosynthetic. The resulting force
        
        
          equilibrium differential equation is solved using a force boundary condition at the free end of the geosynthetic, and a displacement
        
        
          boundary condition at the end of the active length of the geosynthetic. The solution results in a parameter, the stiffness of soil-
        
        
          geosynthetic interaction, which consolidates the tensile properties of geosynthetic with the interaction properties of the soil-
        
        
          geosynthetic interface. Results of laboratory pullout tests illustrate the validity of the soil-geosynthetic interaction model.
        
        
          RÉSUMÉ : Alors que la rupture finale régit les performances de certains systèmes renforcés par des géosynthétiques (par exemple les
        
        
          murs renforcés), la réponse en petits déplacements régit le comportement de chaussées renforcées par des géosynthétiques. Pourtant,
        
        
          la quantification et la caractérisation de l'efficacité des produits géosynthétiques sous des conditions de petit déplacement ont été peu
        
        
          étudiées. Le but de cette étude est de développer un modèle d'interaction de sol-géosynthétique qui prenne en compte la rigidité de
        
        
          l'interaction sol-géosynthétique sous les conditions de petit déplacement. Le modèle proposé suppose: (1) une relation linéaire entre la
        
        
          déformation axiale du géosynthétique confiné et la contrainte de traction, et (2) un cisaillement uniforme à l’interface entre le sol et le
        
        
          géosynthétique sur la longueur active du géosynthétique. L’équation différentielle résultant de l’équilibre des forces est résolue à
        
        
          l'aide des conditions aux limites à l'extrémité libre du géosynthétique, ainsi qu’une condition aux limites de déplacement à la fin de la
        
        
          longueur active du géosynthétique. La solution met en évidence un paramètre, le coefficient de rigidité d'interaction sol-
        
        
          géosynthétique, qui combine les propriétés en traction des géosynthétiques avec les propriétés de l'interaction de l'interface sol-
        
        
          géosynthétique. Les résultats des essais d’arrachement en laboratoire illustrent la validité du modèle d'interaction sol-géosynthétique.
        
        
          KEYWORDS: Geosynthetics, Interface Shear, Soil-Geosynthetic Interaction, Small Displacement Conditions, Reinforced Pavement.
        
        
          1 INTRODUCTION
        
        
          Geosynthetic reinforcements are widely used in two groups of
        
        
          geotechnical systems: 1) Retaining walls and slopes, and 2)
        
        
          Pavement systems. In retaining structures and slope
        
        
          stabilization projects, geosynthetic reinforcements are designed
        
        
          to prevent the development of failure surfaces within the soil
        
        
          mass. Accordingly, tensile forces develop within the
        
        
          geosynthetic reinforcements that contribute to the stability of
        
        
          geosynthetic-soil composite (e.g. Zornberg and Christopher
        
        
          2007). Instead, geosynthetic reinforcements in pavement
        
        
          applications are used to improve the performance of the paved
        
        
          road under in-service conditions induced by traffic and
        
        
          environmental loads (e.g. Zornberg et al. 2012, Roodi and
        
        
          Zornberg 2012). While ultimate tensile failure is the condition
        
        
          of concern in the design of geosynthetic-reinforced retaining
        
        
          structures, the small displacement response governs the
        
        
          performance of geosynthetic-reinforced systems in pavement
        
        
          reinforcement applications.
        
        
          Most of the methodologies and models developed for the
        
        
          analysis and design of the geosynthetic-reinforced structures
        
        
          have focused on the maximum strength or ultimate capacity of
        
        
          the geosynthetic layers (Gupta 2009). However, capturing the
        
        
          initial stiffness of soil-geosynthetic interface is central to
        
        
          accurately address the small displacement behavior of
        
        
          geosynthetic reinforced pavement systems. In the absence of
        
        
          proper specifications to characterize the behavior of soil-
        
        
          geosynthetic interfaces under small displacements, designers
        
        
          have typically relied on the mechanical properties of
        
        
          geosynthetics in isolation (e.g. ultimate tensile strength or
        
        
          tensile stiffness/modulus) in an attempt to satisfy a certain level
        
        
          of performance (Archer and Wayne 2012). Studies have aimed
        
        
          at establishing correlations between geosynthetic index
        
        
          properties and their field performance. These index properties
        
        
          have included the rib strength, junction strength, aperture size,
        
        
          wide-width tensile strength, tensile modulus, tensile strength at
        
        
          2% and 5%, and flexural rigidity (e.g. Perkins et al. 2004,
        
        
          Christopher et al. 2008, Cuelho and Perkins 2009, Mahmood et
        
        
          al. 2012, Chen and Abu-Farsakh 2012). However, most of these
        
        
          properties correspond to the behavior of the geosynthetics in-
        
        
          isolation rather than to the soil-geosynthetic interaction.
        
        
          The purpose of this study is to introduce a soil-geosynthetic
        
        
          parameter capable of quantifying the performance of
        
        
          geosynthetic reinforcement under small displacement
        
        
          conditions. This parameter is defined as “Stiffness of Soil-
        
        
          Geosynthetic Interaction” or
        
        
          
            K
          
        
        
          
            SGI
          
        
        
          , which is expected to be
        
        
          constant for a given soil-geosynthetic system under specific
        
        
          confinement stress. This paper describes the assumptions and
        
        
          formulations used to derive the
        
        
          
            K
          
        
        
          SGI
        
        
          . The paper also reports on