 
          1631
        
        
          Pseudo static analysis considering strength softening in saturated clays during
        
        
          earthquakes
        
        
          L’analyse pseudo statique considérant la force de ramollissement dans l’argile saturée lors des
        
        
          tremblements de terre
        
        
          Tsai C.-C.
        
        
          
            National Chung Hsing  University, Taiwan
          
        
        
          Mejia L.H., Meymand P.
        
        
          
            URS Corporation, 1333 Broadway, Suite 800, Oakland, California 94612, USA
          
        
        
          ABSTRACT: Cyclic softening and strength loss of saturated clays during earthquakes is often an important consideration in
        
        
          engineering problems such as slope stability, dam and levee safety, and foundation bearing capacity. This paper proposes/updates a
        
        
          simplified procedure for evaluating cyclic softening (amount of strength loss) that may be expected in saturated clays during
        
        
          earthquakes and implements it in pseudo-static analysis. The procedure has two main steps: (1) estimation of an equivalent cyclic
        
        
          shear strain amplitude and associated number of cycles induced in the soil mass by an earthquake; and (2) estimation of softening and
        
        
          strength loss in the soil mass. The proposed procedure provides reasonable, first-order estimates of cyclic softening consistent with
        
        
          the other developed procedures. In addition, the results of applying the estimated strength softening in pseudo-static analysis are
        
        
          compared with case histories identified as involving cyclic softening of clays.
        
        
          RÉSUMÉ : Le ramollissement cyclique et la perte de résistance de l’argile saturée lors des tremblements de terre est souvent un
        
        
          facteur important dans les problèmes d'ingénierie tels que la stabilité des pentes, les barrages et digues de sécurité, et la capacité
        
        
          portante des fondations. Cet article propose /met à jour une procédure simplifiée pour l'évaluation du ramollissement cyclique
        
        
          (montant de la perte de résistance) auquel on peut s'attendre dans l’argile saturée lors de tremblements de terre et le met en œuvre a
        
        
          travers l'analyse pseudo statique. La procédure comporte deux étapes principales: (1). l’estimation d'une amplitude de déformation
        
        
          cyclique de cisaillement équivalent et le nombre de cycles associé induits dans la masse du sol par un tremblement de terre; et (2)
        
        
          l'estimation de ramollissement et la perte de force dans la masse du sol. La procédure proposée prévoit de façon raisonnable, des
        
        
          estimations cycliques de ramollissement de premier ordre, compatible avec d'autres procédures. Par ailleurs, les résultats de
        
        
          l'application de la force de ramollissement estimée dans l'analyse pseudo statique se comparent bien avec des cas identifiés dans le
        
        
          passé et impliquant le ramollissement cyclique des argiles.
        
        
          KEYWORDS: Cyclic loading, strength softening, clay, strain approach
        
        
          1 INTRODUCTION
        
        
          Cyclic softening of clays is commonly understood as the
        
        
          reduction in soil stiffness and strength due to repeated cyclic
        
        
          loading, as shown in Figure 1. Experiments by Idriss et al.
        
        
          (1978) showed that the initial stiffness and the ordinates of the
        
        
          backbone curve of soft clay are reduced after several cycles.
        
        
          Matasovic and Vucetic (1995) discussed the coupling of cyclic
        
        
          pore-water pressure generation and softening of clay and the use
        
        
          of a threshold strain concept.
        
        
          Recent case histories have revealed evidence of cyclic
        
        
          softening of clays during earthquakes. The 1999 Chi-Chi,
        
        
          Taiwan Earthquake caused extensive ground failure and
        
        
          structural damage in Wufeng, Taiwan. Some of the most
        
        
          interesting cases of damage involved ground failure in areas
        
        
          underlain by low plasticity clayey soils (Chu et al. 2008).
        
        
          During the 1999 Kocaeli earthquake, in situ deformation
        
        
          measurements at the Carrefour Shopping Center showed
        
        
          significant vertical strains in ML/CL and CH strata. Martin et
        
        
          al. (2004) concluded that the ML/CL layer had exhibited
        
        
          “liquefaction type behavior” while “a definitive explanation for
        
        
          significant earthquake-induced settlements in a high-plasticity
        
        
          clay stratum (CH) in Lot C has not yet been found.”
        
        
          Recently, Boulanger and Idriss (2007) developed a
        
        
          procedure for evaluating the potential for cyclic softening in
        
        
          clay-like fine-grained soils during earthquakes. Their procedure
        
        
          uses a stress-based approach similar to that used in semi-
        
        
          empirical liquefaction procedures. Mejia et al. (2009) applied a
        
        
          procedure similar to the Boulanger and Idriss procedure to
        
        
          estimate post-cyclic strengths of clay-like fine-grained soils and
        
        
          applied it to dam safety evaluation.  Tsai and Mejia (2011)
        
        
          utilized cyclic strain to evaluate cyclic softening of clayey soils,
        
        
          which is different from the previous stress-based approach. This
        
        
          paper updates the Tsai and Mejia procedure by adopting the
        
        
          most recent study, especially for estimating equivalent number
        
        
          of cycles in the strain-based approach. The revised procedure is
        
        
          first compared with another more complex analysis procedure
        
        
          by analyzing the same design case. Then it is applied to case
        
        
          histories involving strength loss, and is found to provide
        
        
          reasonable estimates of behavior consistent with the field
        
        
          observations.
        
        
          
        
        
          max
        
        
          
        
        
          
        
        
          
        
        
          max
        
        
          G
        
        
          max
        
        
          
        
        
          c
        
        
          
        
        
          G
        
        
          max
        
        
          CYCLIC LOOP AT CYCLE
        
        
          
            N
          
        
        
          CYCLIC LOOP AT CYCLE
        
        
          
            N=
          
        
        
          1
        
        
          INITIAL LOADING BACKBONE CURVE AT CYCLE
        
        
          
            N=1
          
        
        
          DEGRADED BACKBONE
        
        
          CURVE AT CYCLE
        
        
          
            N
          
        
        
          
        
        
          
        
        
          Figure 1. Illustration of cyclic softening of clays.
        
        
          2 CYCLIC SOFTENING MODELS FOR CLAY
        
        
          Matasovic and Vucetic (1995) proposed a modified hyperbolic
        
        
          model to describe the stress (
        
        
          
        
        
          )-strain (
        
        
          
        
        
          ) behavior (with coupled