 
          1628
        
        
          Proceedings of the 18
        
        
          th
        
        
          International Conference on Soil Mechanics and Geotechnical Engineering, Paris 2013
        
        
          ;
        
        
          0
        
        
          
            BB B
          
        
        
          
            t
          
        
        
          
            t
          
        
        
          
        
        
          
        
        
          ,
        
        
          0
        
        
          
            EE E
          
        
        
          
            t
          
        
        
          
            t
          
        
        
          
        
        
          
        
        
          (4)
        
        
          their relationship can be easily written as
        
        
          ,
        
        
          0
        
        
          0
        
        
          
            B
          
        
        
          
            E
          
        
        
          
            K
          
        
        
          
            B
          
        
        
          
            E
          
        
        
          
            t
          
        
        
          
            t
          
        
        
          
            t
          
        
        
          
        
        
          
        
        
          (5)
        
        
          where  K
        
        
          t
        
        
          is the coefficient of the time variation of the
        
        
          relationship between the base and foundation stiffness,
        
        
          depending on the creep leak rate in the foundation and base, on
        
        
          the level of their stress state, load duration etc.
        
        
          0
        
        
          40
        
        
          80
        
        
          120
        
        
          160
        
        
          1
        
        
          2
        
        
          3
        
        
          3.5
        
        
          Base
        
        
          Foundation
        
        
          t, days
        
        
          
        
        
          t
        
        
          Figure 1 – Chart of time behavior of creep properties of base soil
        
        
          and foundation concrete
        
        
          If, for example, the mean stress in the soil for the foundation
        
        
          under consideration is assumed to be equal to σ=0,2МPа, a
        
        
          different time behavior of K
        
        
          t
        
        
          will be obtained for all three
        
        
          processes of loading the «base-foundation» system under
        
        
          consideration (See Figure 2).
        
        
          0
        
        
          20
        
        
          40
        
        
          60
        
        
          80
        
        
          100
        
        
          t, days
        
        
          1
        
        
          0.6
        
        
          0.2
        
        
          1.4
        
        
          1.8
        
        
          2.2
        
        
          K
        
        
          t
        
        
          t
        
        
          êð
        
        
          K
        
        
          t
        
        
          min
        
        
          Base soil and foundation concrete creep
        
        
          Base soil creep
        
        
          Foundation concrete creep
        
        
          Figure 2 – Coefficient of base stiffness–to-foundation stiffness
        
        
          relation time variation.
        
        
          It is easy to note that K
        
        
          t
        
        
          ≥1 grows over time with
        
        
          development of the foundation material creep, with the base
        
        
          creep manifestation (consolidation), K
        
        
          t
        
        
          ≤1 – decreases, and at
        
        
          simultaneous manifestation of rheological properties of the
        
        
          foundation and base, there is a certain critical loading time tcr,
        
        
          corresponding to the minimum value K
        
        
          t
        
        
          =K
        
        
          tmin
        
        
          . Consequently,
        
        
          the moment of sustained loading, corresponding to the critical
        
        
          time t= t
        
        
          cr
        
        
          may turn out to be the worst in terms of force
        
        
          distribution in the system.
        
        
          2 FOUNDATIONS SETTLEMENT UNDER DYNAMIC
        
        
          LOADS
        
        
          The dynamic loads caused by machinery operation can lead to
        
        
          weak decaying machinery foundations settlements which can
        
        
          often be quite substantial and uneven.
        
        
          The available observational and experimental data obtained
        
        
          while facilities were being subjected to dynamic loads indicate
        
        
          that such settlements can cause buildings and structures
        
        
          damages and the machines involved in the same technological
        
        
          process dysfunction (Aleksandrovych 2012).
        
        
          2.1
        
        
          
            Foundation settlement forecast using heritable creep
          
        
        
          
            theory
          
        
        
          Soil massif provided with linearity in the dynamic tasks and its
        
        
          rheological properties are estimated from the solution of energy
        
        
          balance equation or heritable mechanics of deformable bodies.
        
        
          The second case is considered in the paper. According to
        
        
          Volterra`s approach, who interprets operators as constants, the
        
        
          solution consists in a form of elastic constants and coordinates
        
        
          function multiplication by function of time. Relying on known
        
        
          Schleicher’s solution, the relation of stamp settling on linearly
        
        
          elastic heritable half-space under fixed constant load is
        
        
          presented in the following way:
        
        
          
        
        
          
        
        
          
        
        
          
        
        
          
        
        
          
        
        
           
        
        
          
        
        
          
        
        
          
        
        
          
            t
          
        
        
          
            ст
          
        
        
          
            d tK
          
        
        
          
            Е
          
        
        
          
            b tS
          
        
        
          0
        
        
          2
        
        
          )
        
        
          (
        
        
          1 )
        
        
          1(
        
        
          )(
        
        
          
        
        
          
        
        
          
        
        
          
        
        
          
        
        
          ,
        
        
          (6)
        
        
          where
        
        
          )
        
        
          (
        
        
          
        
        
          
        
        
          
            tK
          
        
        
          – is a creep kernel (Khain 1977, Savinov
        
        
          1979).
        
        
          According to Boltzmann, who was the first to formulate the
        
        
          principle of inheritance, the kernel is used in the following way:
        
        
          )
        
        
          (
        
        
          )
        
        
          (
        
        
          
        
        
          
        
        
          
        
        
           
        
        
          
            t
          
        
        
          
            c
          
        
        
          
            tK
          
        
        
          (7)
        
        
          Boltzmann kernel application results in the logarithmical
        
        
          increase of the settlement with time (Rabotnov 1977). Under the
        
        
          constant strain the finite expression reflecting the settlement
        
        
          progressing with time equates as follows:
        
        
          
            c t
          
        
        
          
            tS
          
        
        
           
        
        
          ) ln(
        
        
          )(
        
        
          (8)
        
        
          Data obtained from special vibrostamp experimental tests
        
        
          conducted in compliance with the technique specified in
        
        
          (Ilyichev at al. 1986) validate the expression competence to
        
        
          describe the deformation progress with time on steady-state
        
        
          (exhaustion) phase of creep (see figures 3 & 4).
        
        
          Figure 3. The curve of settlement progress with time a
        
        
          z
        
        
          = 5µm.