 
          2489
        
        
          Carbonate Cementation via Plant Derived Urease
        
        
          Cimentation carbonatée par l’utilisation d’uréase issue de plantes
        
        
          Hamdan N., Kavazanjian Jr. E., O’Donnell S.
        
        
          
            School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-5306; PH:
          
        
        
          
            (480) 965-3997
          
        
        
          ABSTRACT: The use of plant-derived urease enzyme to induce calcium carbonate (CaCO
        
        
          3
        
        
          ) cementation has been demonstrated
        
        
          through laboratory column tests. Benefits of the use of plant-derived urease over the use of microbially-generated urease to induce
        
        
          carbonate cementation include the small size of the enzyme, which permits penetration into finer grained soils and makes the process
        
        
          less sensitive to bioplugging, and the availability of 100% of the carbon in the substrate for conversion to CaCO
        
        
          3
        
        
          .  The laboratory
        
        
          column tests employed both Ottawa 20-30 silica sand and finer-grained F-60 silica sand. The laboratory column specimens were
        
        
          prepared in a variety of manners and showed varying degrees of cementation and carbonate yield.  Triaxial tests performed on
        
        
          cemented specimens showed significant strength increases over non-cemented specimens.  These tests confirm the feasibility of using
        
        
          plant-derived urease to induce carbonate cementation in sand and provide valuable insight into the factors that must be considered in
        
        
          developing practical applications for ureolytic carbonate precipitation using plant-derived urease enzyme.
        
        
          RÉSUMÉ : La cimentation de sable par du carbonate de calcium (CaCO
        
        
          3
        
        
          ) produit par l’enzyme uréase obtenue à partir de plantes a
        
        
          été réalisée en laboratoire. Les avantages d’utiliser de l’uréase obtenue de plantes plutôt que de l’uréase produite microbilogiquement
        
        
          pour produire la cimentation carbonatée sont la petite taille de l’enzyme qui permet la pénétration dans les sols fins et rend le
        
        
          processus moins sujet au colmatage biologique et la disponibilité à 100% du carbone présent dans le substratum pour conversion en
        
        
          CaCO
        
        
          3
        
        
          . Des essais en colonnes ont été réalisés sur deux sables de silice dits Ottawa 20-30 et F-60 (plus fin). Les échantillons ont été
        
        
          préparés de différentes manières et ont atteint des degrés de cimentation variés et des productions de carbonate différentes. Les
        
        
          résultats des essais de compression triaxiale sur des échantillons cimentés et des échantillons non-cimentés indiquent que les premiers
        
        
          sont beaucoup plus résistants. Ces essais confirment que l’uréase obtenue à partir de plantes peut être utilisée pour induire une
        
        
          cimentation carbonatée dans les sables. De plus ces essais ont permis de d’identifier les facteurs à considérer pour développer des
        
        
          applications pratiques pour l’utilisation de la précipitation carbonatée « uréolytique » en utilisant l’uréase issue de plantes.
        
        
          KEYWORDS: carbonate, cementation, urease, calcite, soil improvement
        
        
          1. INTRODUCTION
        
        
          1.1
        
        
          
            Background
          
        
        
          The potential for using plant-derived urease enzyme to cement
        
        
          sands by inducing calcium carbonate (CaCO
        
        
          3
        
        
          ) precipitation has
        
        
          been demonstrated through a series of laboratory column tests
        
        
          on two different gradations of silica sand.  The use of
        
        
          microbially induced carbonate precipitation (MICP) to cement
        
        
          cohesionless soils has recently received substantial attention
        
        
          from geotechnical researchers (Burbank et al. 2012, Chou et al.
        
        
          2011, Dejong et al. 2010, Harkes et al. 2010, van Paassen et al.
        
        
          2010).  The MICP mechanism most often discussed in the
        
        
          literature and most advanced in terms of field application is
        
        
          hydrolysis of urea (ureolytic hydrolysis).  MICP via ureolytic
        
        
          hydrolysis relies on microbes to generate urease enzyme, which
        
        
          then serves as a catalyst for the precipitation reaction. The use
        
        
          of plant-derived urease (enzymatic ureolytic hydrolysis) to
        
        
          induce CaCO
        
        
          3
        
        
          precipitation eliminates the need for microbes in
        
        
          the CaCO
        
        
          3
        
        
          precipitation process.
        
        
          Besides eliminating the need to nurture urease-producing
        
        
          microbes, enzymatic ureolytic hydrolysis offers several other
        
        
          advantages over ureolytic MICP.  Applications of ureolytic
        
        
          MICP on clean sands in laboratory column tests and limited
        
        
          field tests have encountered significant practical difficulties,
        
        
          including bioplugging (permeability reduction accompanying
        
        
          induced mineral precipitation) and generation of a toxic waste
        
        
          product (ammonium salt) (Harkes et al. 2010, van Paassen et al.
        
        
          2008). Bioplugging not only limits the distribution of
        
        
          precipitation agents within the soil but also makes flushing of
        
        
          the waste product from the soil a difficult, energy intensive task.
        
        
          Due to these limitations, mass stabilization of soil using
        
        
          ureolytic MICP remains problematic. Furthermore, the microbes
        
        
          that produce the urease enzyme cannot readily penetrate the
        
        
          pores of soils smaller than medium to fine sand, limiting the
        
        
          minimum grains size of soils amenable to ureolytic MICP to
        
        
          clean fine sands or coarser graded soils.  The small size (on the
        
        
          order of 12 nm) of the urease enzyme suggests that CaCO
        
        
          3
        
        
          precipitation by enzymatic ureolytic hydrolysis will be less
        
        
          susceptible to bio-plugging and will be able to penetrate finer
        
        
          grained soils, perhaps into the silt-sized particle range,
        
        
          compared to MICP processes.
        
        
          1.2
        
        
          
            Sustainability of Ground Improvement Practices
          
        
        
          Finding effective solutions to ground improvement challenges is
        
        
          becoming increasingly complex due to sustainability
        
        
          considerations.  Established materials and methods often need
        
        
          to be either replaced or supplemented by innovative materials
        
        
          and environmentally-friendly practices to address sustainability
        
        
          considerations. One example of a common building material
        
        
          that poses significant sustainability concerns is Portland cement.
        
        
          Portland cement is widely used in ground improvement
        
        
          applications. Unfortunately, Portland cement production is
        
        
          extremely energy intensive and a major source of emissions of
        
        
          carbon dioxide (CO
        
        
          2
        
        
          ), as well as of sulfur and nitrogen oxides.
        
        
          MICP has been explored recently as an alternative to Portland
        
        
          cement for ground improvement.  Reductions in the use of