 
          1475
        
        
          Dynamic soil-pile behavior in liquefiable sand overlaid with soft clay
        
        
          Dynamiquesol-pieucomportementdans le sableliquéfiablerecouvert d'argile molle
        
        
          Ghotbi S.M.A
        
        
          .
        
        
          , Olyaei M., Yasrebi S.S.
        
        
          
            Associate Professor, Tarbiat Modares University
          
        
        
          Mosallanejad M.
        
        
          
            Assistant Professor, Shiraz University
          
        
        
          ABSTRACT: A lot of structures are constructed in the vicinity of river streams or sea shores among which bridges, wharves and wind
        
        
          turbines are of more importance. Soil covering these regions is generally constituted of sedimentary loose sand and very soft clay. For
        
        
          this reason, pile foundations are typically used to support the structures and transfer loads to deeper and denser soil. Saturated loose
        
        
          sands which have low relative densities are suspected to liquefy during dynamic loadings like earthquakes. The effect of soft clay
        
        
          overlaying sandy soil is also some sort of questionable during liquefaction. In this study, a 3D model is used to investigate the soil and
        
        
          pile response during liquefaction using FEM method. The constitutive model is based on multi-surface plasticity framework and is
        
        
          capable of predicting sand behavior in undrained condition. Soil response is investigated under some aspects like loading frequency
        
        
          and presence of clayey layer. Pile behavior in terms of pile bending moment is also discussed. It can be concluded that loading
        
        
          frequency and presence of clay layer can have serious effects on pile responses.
        
        
          RÉSUMÉ : Un grand nombre de structures sont construites à proximité des cours d’eau ou sur les rives de la mer dont les ponts, les
        
        
          quais et les éoliennes sont plus importantes. Les sols dans ces régions sont généralement constitués de sable et d’argile sédimentaire
        
        
          meuble très doux. Pour cette raison, les fondations sur pieux sont généralement utilisées pour soutenir les structures et les charges de
        
        
          transfert aux sols plus profonds et plus denses. Les sables saturés et lâches qui ont de faibles densités relatives sont soupçonnés de se
        
        
          liquéfier sous charges dynamiques telles que les tremblements de terre. L’effet des superpositions d’argile et de sable fin du sol est
        
        
          étudié lors de la liquéfaction. Dans cette étude, un modèle 3Dest utilisé pour étudier le sol et apporter une réponse lors de la
        
        
          liquéfaction en utilisant la méthode des éléments finis. Le modèle constitutif est basé sur le cadre plasticité multi-surface et est
        
        
          capable de prédire le comportement du sable dans un état non drainé. La réponse du sol est étudiée sous certains aspects tels que la
        
        
          fréquence de chargement et la présence de la couche argileuse. Le comportement des pieux en moment de flexion pile est également
        
        
          discuté. On peut en conclure que la fréquence de chargement et la présence d’une couche d'argile peuvent avoir des effets graves sur
        
        
          les réponses de pieux.
        
        
          KEYWORDS: Soil-Pile interaction, Liquefaction, Dynamic Loading, Multi-Surface constitutive model.
        
        
          1 INTRODUCTION
        
        
          Structures constructed at marine areas and river vicinities are
        
        
          endangeded by liquefaction during dynamic loading and
        
        
          specially earthquakes. Some cases of such extensive destruction
        
        
          of structures are observed during earthquakes of Niigata(1964),
        
        
          Alaska(1964), Loma-Prietta(1989) and Kobe (1995). An
        
        
          example of damages to wharf piles caused by liquefaction is
        
        
          shown in Figure 1.
        
        
          Figure 1.Bending and displacement of pile foundation at Puerto de
        
        
          Coronel Muelle wharf.
        
        
          The liquefaction mechanisms can be classifed into two main
        
        
          categories: 1) Flow Liquefactin 2) Cyclic Mobility.According to
        
        
          Ishihara (1997), it can be concluded that two types of lateral
        
        
          loading is applied to a pile during an earthquake: 1)Inertial
        
        
          foces 2)Kinematic forces. Inertial forces are applied from
        
        
          superstructure to the pile head and their frequency is a function
        
        
          of structure and the earthquakedominant frequency. Inertial
        
        
          forces are largest before liquefactin and are intensely decreased
        
        
          after the soil is liquefied. Kinematic forces are applied to pile
        
        
          due to the displacement of liquefied soil and they become larger
        
        
          if the ground  is inclined or a non-liquefiable layer is overlaid
        
        
          on the liquefiable layer.
        
        
          Although a lot of research has been carried out to study the
        
        
          liquefaction phenomena and its effect on structures, it can be
        
        
          mentioned that there are some aspects relating to pile response
        
        
          which need to be more clarifiedby utilization of experimental
        
        
          and numerical methods.In the case of experimental studies,
        
        
          some noteable recent works are mentioned briefly. Wilson et al.
        
        
          (1998)accomplished a series of centrifuge tests on piles and
        
        
          their superstructures in liquefiable soil. They observed that
        
        
          sesmic response of soil-pile-superstructure is related to soil
        
        
          type, nature of earthquake and the soil displacements. Other
        
        
          physical test to be noted are Komijo et al. (2004), Yao et al.
        
        
          (2004), Tokimatsu et al. (2005), Dunga et al. (2006), Tamura &
        
        
          Tokimatsu (2005), Han et al. (2007) and Haeri et al. (2012).
        
        
          Some important numerical studies include Finn et al. (2001),
        
        
          Tabesh & Poulos (2001), Miyazaki et al. (2001), Fujita and Finn
        
        
          (2002), Klar et al. (2003), Liyanapathirana & Poulos (2002,
        
        
          2005), Chang et al. (2007), Bhattacharya et al. (2008), Zhang &
        
        
          Jeremic (2009) and Rahmani & Pak (2011). In many of the
        
        
          numerical studies mentioned above, asoil fluid formulation with
        
        
          uncoupled aproach is used. Furthermore, previously used
        
        
          constitutive models  are generaly very simple. These can lead to
        
        
          inacurate results in some cases. Also, some aspects like effect of
        
        
          Comportement dynamique sol-pieu dans un sable liquéfiable surmonté par de l’argile molle