 
          3446
        
        
          Proceedings of the 18
        
        
          th
        
        
          International Conference on Soil Mechanics and Geotechnical Engineering, Paris 2013
        
        
          The transformation must be done using mean q values
        
        
          ci
        
        
          The next step is to calculate V[E
        
        
          Si
        
        
          ]. Observe that, as only
        
        
          one empirical correlation was adopted, V[α] =0 and then,
        
        
          V
        
        
          2
        
        
          [E
        
        
          Si
        
        
          ] becomes automatically null.
        
        
          .
        
        
          4 CONCLUSIONS
        
        
          Following, the settlement mean and variance contribution of
        
        
          each sublayer has to be evaluated. Table 1 shows the main
        
        
          calculation steps and results for the given example, where: q
        
        
          ci
        
        
          and E
        
        
          Si
        
        
          are given in MPa and predicted settlements results (ρ,
        
        
          σ[ρ]) are given in mm. Variances are given in square units.
        
        
          It has been proposed and briefly discussed three simplified
        
        
          methodologies for probabilistic analysis of settlements of
        
        
          footings in sands, which adopts the soil stratification to compute
        
        
          the only considered random variable (deformability modulus).
        
        
          Table 1. Evaluation of CPT results, uncertainties in E
        
        
          Si
        
        
          , and application
        
        
          of the SOSM method.
        
        
          Despite the presented limitations adopted on methodologies
        
        
          proposal, it can be assumed as a first approximation for
        
        
          evaluating the uncertainties (especially in deformability
        
        
          modulus) at the SLS analysis of a foundation. The association
        
        
          between probabilistic analysis and settlement predictions can
        
        
          become an interesting tool for geotechnical engineering in the
        
        
          knowing of soil variability and related uncertainties.
        
        
          Sublayer q
        
        
          ci
        
        
          V[q
        
        
          ci
        
        
          ] E
        
        
          Si
        
        
          V [E
        
        
          Si
        
        
          ]
        
        
          ρ
        
        
          i
        
        
          V[ρ
        
        
          i
        
        
          ] % in V[ρ]
        
        
          1
        
        
          10,0 10,3 20,1 48,2 0,252 0,007
        
        
          0,2
        
        
          2
        
        
          9,6
        
        
          9,9 19,2 46,0 0,791 0,077
        
        
          2,0
        
        
          3
        
        
          9,7
        
        
          9,9 19,4 46,0 1,308 0,207
        
        
          5,4
        
        
          4
        
        
          9,2
        
        
          9,4 18,4 44,1 1,937 0,481
        
        
          12,5
        
        
          5
        
        
          8,9
        
        
          9,3 17,9 43,3 2,576 0,884
        
        
          22,9
        
        
          6
        
        
          9,4
        
        
          9,6 18,8 44,7 2,607 0,845
        
        
          21,9
        
        
          7
        
        
          9,7
        
        
          9,8 19,3 45,7 2,358 0,672
        
        
          17,4
        
        
          8
        
        
          11,9 12,1 23,8 56,4 1,737 0,297
        
        
          7,7
        
        
          9
        
        
          13,3 13,5 26,6 63,0 1,414 0,176
        
        
          4,6
        
        
          10
        
        
          15,4 15,5 30,8 72,2 1,104 0,092
        
        
          2,4
        
        
          11
        
        
          18,1 18,0 36,2 83,8 0,839 0,045
        
        
          1,2
        
        
          12
        
        
          21,5 21,6 42,9 100,8 0,628 0,022
        
        
          0,6
        
        
          13
        
        
          24,2 24,7 48,4 115,3 0,489 0,012
        
        
          0,3
        
        
          14
        
        
          24,8 25,8 49,7 120,5 0,413 0,008
        
        
          0,2
        
        
          15
        
        
          21,8 22,6 43,7 105,5 0,400 0,009
        
        
          0,2
        
        
          16
        
        
          20,4 21,0 40,7 97,9 0,352 0,007
        
        
          0,2
        
        
          17
        
        
          19,2 19,8 38,5 92,3 0,291 0,005
        
        
          0,1
        
        
          18
        
        
          16,1 16,3 32,3 76,1 0,250 0,005
        
        
          0,1
        
        
          19
        
        
          15,9 16,0 31,7 74,5 0,153 0,002
        
        
          0,0
        
        
          20
        
        
          15,9 16,0 31,8 74,5 0,051 0,000
        
        
          0,0
        
        
          Sum
        
        
          -
        
        
          -
        
        
          -
        
        
          -
        
        
          19,95 3,86
        
        
          100,0
        
        
          σ[ρ]
        
        
          -
        
        
          -
        
        
          -
        
        
          -
        
        
          -
        
        
          1,96
        
        
          -
        
        
          COV (%)
        
        
          -
        
        
          -
        
        
          -
        
        
          -
        
        
          -
        
        
          9,84
        
        
          -
        
        
          Therefore, any attempt to quantify the sources of
        
        
          uncertainties and its effects in geotechnical analysis, through
        
        
          probabilistic models, may become an important tool for helping
        
        
          engineers to make better and consistent design decisions.
        
        
          5 REFERENCES
        
        
          Aoki, N.; Cintra, J. C. A. and Menegotto, M. L. 2002.
        
        
          
            Segurança e
          
        
        
          
            confiabilidade de fundações profundas
          
        
        
          . 8th Congresso Nacional de
        
        
          Geotecnia, vol. 2, p. 797-806, Lisboa.
        
        
          Baecher, G. B. and Christian, J. T. 2003. Reliability and statistics in
        
        
          geotechnical engineering. John Wiley and Sons, Chichester,
        
        
          England.
        
        
          Berardi, R. and Lancellotta, R. 1991. Stiffness of granular soils from
        
        
          field performance. Gèotechnique 41, No. 1, p. 149-157.
        
        
          Bredja, J. J. et al. 2000. Distribution and variability of surface soil
        
        
          properties at a regional scale. Soil Science Society of America
        
        
          Journal, 64, p. 974-982.
        
        
          Burland, J. B. and Burbidge, M. C. 1985. Settlement of foundations on
        
        
          sand and gravel. Proceedings of Institution of Civil Engineers, Part
        
        
          1, 78, Dec., p. 1325-1381.
        
        
          Campanella, R. G.; Wickremesingue, D. S. and Robertson, P. K. 1987.
        
        
          Statistical treatment of cone penetrometer test data. Department of
        
        
          Civil Engineering, University of British Columbia, Vancouver
        
        
          B.C., Canada, p. 1010-1019.
        
        
          The mean and variance of the predicted settlement are then
        
        
          the sum of the increments of each sub-layer, as suggested by the
        
        
          sum at the bottom of the table 1. So, the predicted settlement
        
        
          can now be represented by the form:
        
        
          Fenton, G. A. and Griffiths, D. V. 2002. Probabilistic foundation
        
        
          settlement on spatially random soil. ASCE Journal of Geotechnical
        
        
          and Geoenvironmental Engineering, 128(5), p. 381-390.
        
        
          Gimenes, E. A. and Hachich, W. 1992.
        
        
          
            Aspectos quantitativos em
          
        
        
          
            análises de risco geotécnico
          
        
        
          . Solos e Rocha, São Paulo, 15, (1), p.
        
        
          3-9.
        
        
          2 20 ) (
        
        
           
        
        
          
            mm
          
        
        
          (19)
        
        
          For the complete characterization of the solicitation curve
        
        
          (predicted settlement) lognormal distribution was used. Figure 4
        
        
          shows the results for the probability of the predicted settlement
        
        
          to exceed different values of limiting settlements in a range
        
        
          between 10 to 50 mm. For example, the probability of the
        
        
          predicted settlement to exceed 25 mm is about 1,1%. For
        
        
          exceeding values of over 40 mm, P [ρ≥40mm] ≈0.
        
        
          Goldsworthy, J. S. 2006. Quantifying the risk of geotechnical site
        
        
          investigations. PhD. The University of Adelaide, Australia,
        
        
          January.
        
        
          
        
        
          Griffiths, D. V.; Fenton, G. A. and Tveten, D. E. 2002. Probabilistic
        
        
          geotechnical analisys. How difficult does it need to be?, Proc. of the
        
        
          Int. Conf. on Probabilistics in Geotechnics: Technical and
        
        
          Economic Estimation, R. Pottler, H. Klapperich and H. Schweiger
        
        
          (eds.), Graz, Austria, United Engineering Foundation, New York,
        
        
          September.
        
        
          Negulescu, C. and Foerster, E. 2010. Parametric studies and quantitative
        
        
          assessment of the vulnerability of a RC frame building exposed to
        
        
          differential settlements. Natural Hazards and Earth System
        
        
          Sciences. Sci., 10, p. 1781-1792.
        
        
          Schmertmann, J. H. 1970. Static cone to compute static settlement over
        
        
          sand. Journal of the Soil Mechanics and Foundations Division,
        
        
          ASCE, vol.96, n° SM.3, p. 1011-1043.
        
        
          Schmertmann J. H.; Hartman, J. P. and Brown, P. R. 1978. Improved
        
        
          strain influence factor diagrams. Journal of the Geotechnical
        
        
          Division, ASCE, 104(8), p. 1131-1135.
        
        
          Sivakugan, N. and Johnson, K. 2004. Settlement predictions in granular
        
        
          soils: a probabilistic approach. Gèotechnique, LIV (07): p. 499-502.
        
        
          Figure 4. Probability of the predicted settlement to exceed different
        
        
          values of limiting settlement.
        
        
          The analysis of the sources of uncertainties indicates that
        
        
          about 80% of the settlement variance is influenced by the
        
        
          uncertainties due to inherent soil variability and measurement
        
        
          test errors. It is important to emphasize that the uncertainties
        
        
          due to transformation model was not evaluated in the example.