 
          915
        
        
          Development of pore water pressure around a stone column.
        
        
          Développement des pressions interstitielles autour d’une colonne ballastée.
        
        
          Gautray J., Laue J., Springman S.M.
        
        
          
            Institute for Geotechnical Engineering, ETH Zürich, Switzerland
          
        
        
          Almeida M.
        
        
          
            Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
          
        
        
          ABSTRACT: The bearing capacity of model stone columns installed in soft soil is investigated in a series of centrifuge model tests
        
        
          that are carefully instrumented to reveal the response of the ground during penetration of the tool and the cyclic compaction process
        
        
          during withdrawal. Pore pressures are measured at various distances from the column axes as well as at different depths, and the
        
        
          influence of the excess pore water pressure build up and dissipation around the column and the development of the load transfer
        
        
          mechanism are examined. The data are analysed and compared to theoretical solutions, both for the installation phase of the column
        
        
          as well as for subsequent loading with a stiff, circular foundation. These provide a set of high quality data for validating numerical
        
        
          methods. The measurements, and the associated analyses, will help to determine the transient load bearing capacity of stone columns
        
        
          and the effects of accelerated pore pressure dissipation, which will contribute to improving the understanding and use of this mode of
        
        
          ground improvement.
        
        
          RÉSUMÉ : Une recherche sur la capacité portante de modèles de colonnes ballastées installées dans un sol mou est réalisée dans une
        
        
          série d’essais en centrifugeuse instrumentés avec soin afin de mettre en exergue la réponse du sol durant la pénétration de l’outil ainsi
        
        
          que le processus de compaction cyclique durant l’extraction. Les pressions interstitielles sont mesurées à différentes distances de l’axe
        
        
          de la colonne ainsi qu’à différentes profondeurs et l’influence de la formation et de la dissipation des surpressions interstitielles autour
        
        
          de la colonne et le développement du mécanisme de transfert de charge sont examinés. Les données sont analysées et comparées avec
        
        
          des solutions théoriques pour la phase d’installation de la colonne et pour le chargement consécutif avec une fondation circulaire
        
        
          rigide, fournissant une série de données de haute qualité pour la validation de méthodes numériques. Les mesures, ainsi que les
        
        
          analyses associées, aideront à déterminer la capacité portante de colonnes ballastées ainsi que les effets de la dissipation accélérée des
        
        
          pressions interstitielles, ce qui contribuera à améliorer la compréhension et l’utilisation de ce mode d’amélioration des sols.
        
        
          KEYWORDS: Ground improvement, stone columns, consolidation
        
        
          1 INTRODUCTION
        
        
          Stone columns have proven to be an efficient ground
        
        
          improvement technique. They increase the vertical stiffness and
        
        
          reduce the consolidation time, as radial drainage dominates the
        
        
          consolidation process (e.g. Hansbo, 1981).
        
        
          This paper presents the results of a centrifuge test conducted
        
        
          in the ETH Zürich geotechnical drum centrifuge (Springman et
        
        
          al., 2001) at multiple earth’s gravity, n = 50. A stone column
        
        
          has been installed in a clay model (Weber, 2008) and is loaded
        
        
          with a circular footing. The pore pressures developing during
        
        
          installation and the loading phase were recorded and studied.
        
        
          2 SOILS
        
        
          2.1
        
        
          
            Soft clay bed - Birmensdorf clay
          
        
        
          Remoulded natural clay from the traffic interchange near to
        
        
          Birmensdorf was consolidated in a large oedometer and used as
        
        
          soft clay bed for the experiment. The main properties of this
        
        
          clay are summarised in Table 1.
        
        
          2.2
        
        
          
            Granular column – quartz sand
          
        
        
          As tested by Weber (2008), quartz sand (fraction 0.5 – 1 mm)
        
        
          was used for constructing the sand columns (see Table 2).
        
        
          Table 1: Properties of the reconstituted Birmensdorf clay (after
        
        
          Weber, 2008).
        
        
          USCS classification
        
        
          CH
        
        
          Clay particle content from
        
        
          sedimentation analysis < 2μm [%]
        
        
          42
        
        
          Liquid limit w
        
        
          l
        
        
          [%]
        
        
          45-62 (av. 60)
        
        
          Plastic limit w
        
        
          p
        
        
          [%]
        
        
          18-26 (av. 21)
        
        
          Plasticity index I
        
        
          p
        
        
          [%]
        
        
          27-36 (av. 30)
        
        
          Critical state angle of friction
        
        
          �
        
        
          ’
        
        
          cv
        
        
          [°]
        
        
          24.5
        
        
          Cohesion c’ [kN/m
        
        
          2
        
        
          ]
        
        
          0
        
        
          Specific density
        
        
          ρ
        
        
          s
        
        
          [g/cm
        
        
          3
        
        
          ]
        
        
          2.75
        
        
          Medium grain size d
        
        
          50
        
        
          [μm]
        
        
          4
        
        
          Water-saturated permeability k [m/s]
        
        
          for a void ratio of e = 1.10 [-]
        
        
          1.5.10
        
        
          -9
        
        
          2.3
        
        
          
            Filling material - Perth sand
          
        
        
          Perth sand was used in order to fill the gap between the clay
        
        
          model and the wall of the model container (see Fig. 1). Selected
        
        
          properties of this material can also be found in Table 2.