718
Proceedings of the 18
th
International Conference on Soil Mechanics and Geotechnical Engineering, Paris 2013
0.2
0.4
0.6
0.8
1
1.2
1.4
0.1
0.2
0.3
0.4
0.5
0.6
0
0.1
0.2
0.3
Embankment profile
Water surface
Flow velocity field
x
coordinate: m
Inflow boundary (0.0029 m
3
/s/m)
Free outfall boundary
Figure 2. Initial and boundary conditions for three-dimensional simulation.
0.2
0.4
0.6
0.8
1
1.2
1.4
0.1
0.2
0.3
0.4
0.5
0.6
0
0.05
0.1
0.15
0.2
0.25
x
coordinate: m
Dry cell
100 sec
0.2
0.4
0.6
0.8
1
1.2
1.4
0.1
0.2
0.3
0.4
0.5
0.6
0
0.05
0.1
0.15
0.2
0.25
x
coordinate: m
Dry cell
600 sec
Figure 3. Computed embankment profiles eroded by concentrated water flow (100 and 600 seconds after overflow).
6 REFERENCES
Coleman E. S., Andrews D. P. and Webby M. G. 2002. Overtopping
breaching of noncohesive homogeneous embankments. Journal of
Hydraulic Engineering
128 (9), 829-838.
Visser P. J. 1998.
Breach growth in sand dike
. Delft University of
Technology, Netherlands, PhD thesis.
Foster M., Fell R. and Spannagle M. 2000. The statistics of
embankment dam failures and accidents.
Can. Geotech. J.
37,
1000-1024.
Yoon T. H. and Kang S. 2004. Finite volume model for two
dimensional shallow water flows on unstructured grids.
Journal of
Hydraulic Engineering
130 (7), 678-688.
Hanson G. J., Cook K. R. and Hunt S. L. 2005. Physical modeling of
overtopping erosion and breach formation of cohesive
embankments.
Transactions of the ASAE
48 (5), 1783-1794.
Zhou J. G., Causon D. M., Mingham C. G. and Ingram D. M. 2001. The
surface gradient method for the treatment of source term in the
shallow-water equations.
Journal of Computational Physics
168,1-
25.
Hanson G. J., Temple D. M., Hunt S. L., and Tejral R. D. 2011.
Development and characterization of soil material parameters for
embankment breach.
Applied Engineering in Agriculture
27 (4),
587-595.
Zhu Y. 2006.
Breach growth in clay-dikes
. PhD thesis, Delft University
of Technology, Netherlands.
Harten A., Lax P. D., and van Leer B. 1983. On upstream differencing
and Godunov-type schemes for hyperbolic conservation laws.
SIAM
Rev.
25 (1), 35–61.
Holmes D. G. and Connel S. D. 1989. Solution of the 2D Navier-Stokes
equations on unstructured adaptive grids.
Proc. 9th AIAA
Computational Fluid Dynamics Conference
, Technical Papers
(A89-41776 18-02), 25-39.