

Webinaires des 12 Avril et 10 Mai 2022

Soutènements en zone sismique – Partie I

Séance du 12 Avril 2022 animée par :

•	Fahd CUIRA	TERRASOL – CFMS
•	Delphine BOUTHEON	ERG – CFMS
•	Gilles VALDEYRON	CEREMA - CNJOG
•	Stéphane BRULE	MENARD - AFPS/CFMS
•	Dominique BATISTA	CEREMA

Partie I – 12 Avril 2022 de 10h30 à 12h30

- Stratégie de dimensionnement sous séisme (25 min)
- Evaluation des poussées et butées dynamiques (35 min)
- REX post-séisme en milieux urbain et maritime (35 min)
- Questions réponses (25 min)

Page 2

Partie II – 10 Mai 2022 de 10h30 à 12h30

- Soutènements gravitaires
- Soutènement définitif d'une fouille urbaine
- Soutènements en milieu maritime
- Perspectives normatives (nouvel EC8, ouvrages portuaires)

Webinaire CFMS du 12 Avril 2022

Page 3

Partie I – 12 Avril 2022 de 10h30 à 12h30

- Stratégie de dimensionnement sous séisme
- Evaluation des poussées et butées dynamiques
- REX post-séisme en milieux urbain et maritime

Webinaire CFMS du 12 Avril 2022

Stratégie de dimensionnement sous séisme

- Les points clés à gérer pour un ouvrage de soutènement
 - ⇒ Action sismique (et forces d'inertie qui en résultent dans le terrain et l'ouvrage de soutènement)
 - ⇒ Comportement des terrains sous séisme (tenant compte des effets de couplage hydromécanique)
 - \Rightarrow Poussée et butée dynamiques des terres (tenant compte des forces d'inertie sismiques)
 - \Rightarrow Comportement des ancrages sous séisme (mouvements différentiels)
 - \Rightarrow Identification des modes de ruine potentiels (et formalismes de justification associés)

Choix de l'action sismique

Accélération sismique de référence a_{qr} – zonage sismique administratif

Page 8

Choix de l'action sismique

• Accélération sismique maximale (PGA) selon le formalisme de l'Eurocode 8

Webinaire CFMS du 12 Avril 2022

Page 9

Choix de l'action sismique

ms

• Le rôle du coefficient d'importance γ_{I} – lien avec la période de retour

Catégorie Importance	Coefficient Importance	Période de retour	Probabilité de dépassement
I Structures secondaires	0,80	250 ans	18%
II Structures courantes	1,00	475 ans	10%
III Structures essentielles	1,20	800 ans	6%
IV Structures primordiales	1,40	1 300 ans	4%
ICPE (existantes)	1,85	3 000 ans	2%
ICPE (neuves)	2,20	5 000 ans	1%
$\gamma_{\rm I} = \sqrt[3]{\frac{\rm T_{retour}}{\rm T_{475}}}$		$P(a \ge a_g) = 1 - $	$\exp\left(-\frac{D_{vie}}{T_{retour}}\right)$
Webir	naire CFMS du 12 A	vril 2022	

Choix de l'action sismique

nc

• Le rôle du facteur S – Classification du terrain

Classe	Description	Pa	aramètre	S		
		V _{S,30} (m/s)	N (SPT)	C _u (kPa)		
Α	Rocher – Au plus 5m d'alluvions	> 800	-	-	S = 1,00	
В	Sable très dense, gravier, argile raide; h>10m	360 - 800	> 50	> 250	S = 1,35	
С	Sable dense, moyennent dense; argile raide; h=10 – 100 m	180 - 360	15 - 50	70 - 250	S = 1,50	_ pour zones
D	Sable lâche, moyennent dense; argile ferme à molle	< 180	< 15	< 70	S = 1,60	101
E	Alluvions C ou D, h=5 – 20m Surmontant rocher (A)				S = 1,80	
S ₁	Couches contenant strates h>10m Argile molle (IP > 40), w élevée	< 100 (indicatif)	-	10 - 20		
S ₂	Sites liquéfiables; tout autre type de site non référencé ci dessus					

Webinaire CFMS du 12 Avril 2022

Page 10

Page 12

Choix de l'action sismique

- Principe de l'approche pseudo-statique
 - ⇒ Simulation de l'action sismique par deux forces d'inertie équivalentes F_H et F_V proportionnelles au poids W : $F_H = k_H$.W et $F_V = k_V$.W
 - ⇒ Les coefficients sismiques k_H et k_V correspondent respectivement aux composantes horizontale et verticale a_H et a_V de l'action sismique du calcul. On a par définition : $a_H = k_H g$ et $a_V = k_V g$
 - \Rightarrow Les valeurs de k_{H} et k_{V} sont calées sur une fraction du rapport a_{N}/g :

$$k_{\rm H} = \frac{1}{r} \frac{a_{\rm N}}{g} \qquad k_{\rm V} = \pm 0.3 \text{ à } 0.5 k_{\rm H}$$

$$W = mg$$

$$k_{\rm W} W = mg$$

$$k_{\rm W} W W = mg$$

$$k_{\rm W} W W W W W W$$

Webinaire CFMS du 12 Avril 2022

Choix de l'action sismique

- Principe de l'approche pseudo-statique
 - \Rightarrow Simulation de l'action sismique par deux forces d'inertie équivalentes F_H et F_V proportionnelles au poids W : $F_H = k_H.W$ et $F_V = k_V.W$
 - ⇒ Les coefficients sismiques k_H et k_V correspondent respectivement aux composantes horizontale et verticale a_H et a_V de l'action sismique du calcul. On a par définition : $a_H = k_H g$ et $a_V = k_V g$
 - \Rightarrow Les valeurs de k_{H} et k_{V} sont calées sur une fraction du rapport a_{N}/g :

$$k_{\rm H} = \frac{1}{r} \frac{a_{\rm N}}{g}$$
 $k_{\rm V} = \pm 0.3 \text{ à } 0.5 k_{\rm H}$

- ⇒ Valeur du coefficient « r » fonction de la capacité de l'ouvrage à accepter des déplacements irréversibles postséisme (selon conditions exploitation et de liaison ext.)
- \Rightarrow Pas de déplacements irréversibles si r = 1
- \Rightarrow Déplacements irréversibles non nuls si r > 1

Page 14

Comportement des terrains sous séisme

• Propriétés de résistance au cisaillement sous séisme

- \Rightarrow Terrains hors nappe = mêmes propriétés de résistance que sous action statique
- \Rightarrow Terrains « Ouverts » sous nappe (perméabilité > 5 x 10⁻³ m/s) = comportement drainé
- \Rightarrow Terrains « Fermés » sous nappe (perméabilité < 5 x 10⁻⁴ m/s) = comportement non drainé

 \Rightarrow Choix des propriétés au cisaillement pour certains terrains types

	Comportement	Paramètres
Graves	Frottant	φ'
Sables hors nappe	Frottant	φ'
Sables sous nappe	Frottant Cohérent	φ՝ + Δu τ _{cy,u}
Sols fins	Cohérent	Cu

Comportement des terrains sous séisme

- Vérification de la stabilité sismique du site (en l'absence de l'ouvrage)
 - ⇒ Toujours commencer par examiner les conditions de stabilité « initiale » du site sous séisme (même quand celui-ci est initialement horizontal) : cela permet de juger de la pertinence des hypothèses du projet (action sismique vs résistance mécanique)
 - ⇒ Par défaut, un soutènement n'est pas forcément un élément de renforcement et n'a donc pas nécessairement vocation à améliorer les conditions de stabilité initiale du site => inutile de chercher à justifier la tenue au séisme d'un ouvrage soutenant un site instable sous séisme !

Page 16

Comportement des terrains sous séisme

- Vérification de la stabilité sismique du site (en l'absence de l'ouvrage)
 - ⇒ Toujours commencer par examiner les conditions de stabilité « initiale » du site sous séisme (même quand celui-ci est initialement horizontal) : cela permet de juger de la pertinence des hypothèses du projet (action sismique vs résistance mécanique)
 - ⇒ Par défaut, un soutènement n'est pas forcément un élément de renforcement et n'a donc pas nécessairement vocation à améliorer les conditions de stabilité initiale du site => inutile de chercher à justifier la tenue au séisme d'un ouvrage soutenant un site instable sous séisme !
 - ⇒ En présence d'un terrain potentiellement liquéfiable => traitement préalable du problème de liquéfaction. Il convient dans tous les cas de rappeler que l'obtention d'une sécurité $F_{liquéfaction} = 1,25$ vis-à-vis du risque de liquéfaction ne signifie pas absence de surpressions interstitielles. Celles-ci ne peuvent être négligées dans le calcul de soutènement que pour $F_{liquéfaction} \ge 2,00$ (EC8-5 §7.3.2.2(5)).

Poussée et butée dynamiques des terres

- Evaluation des incréments de poussée/butée dynamiques
 - ⇒ Plusieurs approches possibles : Mononobé-Okabé (Coulomb), Lancellota (Rankine), Calcul à la rupture
 - ⇒ Toutes couvrent par construction la variation des paliers <u>limites</u> de poussée/butée
 - ⇒ A compléter par un choix approprié du point d'application, la hauteur d'application, rugosité etc.

Stratégie de dimensionnement des soutènements sous séisme Stabilité sismique d'un ouvrage de soutènement Modes de rupture potentiels d'un écran de soutènement . Défaillance Rotation excessive liée Déplacement excessif structurale à un défaut de butée lié à la défaillance des ancrages Rotation excessive liée à un mécanisme de grand glissement Rotation excessive liée à l'instabilité du massif d'ancrage tms Webinaire CFMS du 12 Avril 2022 Page 22

Page 23

Stabilité sismique d'un ouvrage de soutènement

- Formalisme de justification
 - ⇒ Un état limite sismique est un état limite pour lequel il y a apparition de déplacements irréversibles d'une amplitude inacceptable. Cela peut se présenter sous la forme d'un déplacement absolu (ex. tassement ou translation excessive) ou différentiel (rotation ou distorsion excessives)
 - ⇒ Le déplacement acceptable par l'ouvrage dépend de son utilisation, son importance (critères de performance), de sa constitution et des conditions d'interaction avec d'autres ouvrages
 - ⇒ L'état limite sismique peut être vérifié « explicitement » par des analyses « en déplacement » (modèle de bloc rigide, modèle dynamique non linéaire etc.) visant à quantifier l'amplitude des déplacements induits et en vérifier l'acceptabilité vis-à-vis de l'ouvrage projeté
 - ⇒ Dans la pratique courante, il est souvent fait recours à des formalismes de justification « pseudostatiques » comparant des actions et des résistances. Il s'agit d'un moyen « détourné » de couvrir lesdits déplacements irréversibles (rôle du facteur « r » notamment, des facteurs partiels etc.)

 \Rightarrow Mise en œuvre pratique illustrée lors du webinaire du 10 Mai 2022

Webinaire CFMS du 12 Avril 2022

Partie I – 12 Avril 2022 de 10h30 à 12h30

- Stratégie de dimensionnement sous séisme
- Evaluation des poussées et butées dynamiques
- REX post-séisme en milieux urbain et maritime

Webinaire CFMS du 12 Avril 2022

Page 25

Evaluation des poussées et butées dynamiques

- Approches globales
 - \Rightarrow Modèle de Mononobé-Okabé (1924) = généralisation du modèle de Coulomb
 - ⇒ Calcul à la rupture = approche cinématique par l'extérieur (Salençon, 1983)
- Approches locales
 - \Rightarrow Modèle de Lancellota (2002) = généralisation du modèle de Rankine
 - ⇒ Utilisation des abaques de Caquot Kérisel avec gravité modifiée

Modèle de Mononobé-Okabé

Modèle de Mononobé-Okabé

nc

Gam (kN/m3)	Phi (°)	Hauteur (m)		Gam (kN/m3)	Phi (°)	Hauteur (m)		Gam (kN/m3)	Phi (°)	Hauteur (m)
20	30	10		20	40	10		20	20	10
· · · · · · · · · · · · · · · · · · ·				I		1		T		1
Coin (alpha)	W*	Р		Coin (alpha)	W*	Р		Coin (alpha)	W*	Р
[°]	[kN/ml]	[kN/ml]		[°]	[kN/ml]	[kN/ml]		[°]	[kN/ml]	[kN/ml]
5	87	125		5	87	87		5	87	188
10	176	210		10	176	148		10	176	305
15	268	268		15	268	188		15	268	383
20	364	305		20	364	210		20	364	434
25	466	327		25	466	217	I	25	466	466
30	577	333		30	577	210		30	577	484
 35	700	327		35	700	188	 	35	700	490
40	839	305		40	839	148		40	839	484
45	1000	268		45	1000	87		45	1000	466
50	1192	210		50	1192	0		50	1192	434
55	1428	125		55	1428	-125		55	1428	383
60	1732	0		60	1732	-305		60	1732	305
65	2145	-188		65	2145	-575		65	2145	188
70	2747	-484		70	2747	-1000		70	2747	0
75	3732	-1000		75	3732	-1740		75	3732	-327
80	5671	-2064		80	5671	-3274		80	5671	-1000
85	11430	-5330		85	11430	-8003		85	11430	-3063
			Bala	vage par	pas de	5° sur α				
				/ J = 1= 00	1					
			We	binaire CFM	IS du 12 /	Avril 2022				

Modèle de Mononobé-Okabé

Modèle de Mononobé-Okabé

ms

	kh	0.2			kh	0.2		kh	0.2														
	kv	0.1			kv	0.1		kv	0.1														
	Gam (kN/m3)	Phi (°)	Hauteur (m)		Gam (kN/m3)	Phi (°)	Hauteur (m)	Gam (kN/m3)	Phi (°)	Hauteur (m)													
	20	30	10		20	40	10	20	20	10													
	·			r	·			·		-													
	Coin (alpha)	W*	Р		Coin (alpha)	W*	Р	Coin (alpha)	W*	Р													
	[°]	[kN/ml]	[kN/ml]		[°]	[kN/ml]	[kN/ml]	[°]	[kN/ml]	[kN/ml]													
	5	96	155		5	96	114	5	96	224													
	10	194	266		10	194	198	10	194	371													
	15	295	348		15	295	260	15	295	475													
	20	400	409		20	400	304	20	400	550													
	25	513	452		25	513	332	 25	513	606													
	30	635	482		30	635	347	 30	635	648													
	35	770	499		35	770	346	 35	770	679													
	40	923	504		40	923	331	40	923	701													
	45	1100	495		45	1100	296	45	1100	713													
	50	1311	470		50	1311	238	50	1311	715													
	55	1571	423		55	1571	148	55	1571	707													
	60	1905	346															60	1905	10	60	1905	682
	65	2359	223		65	2359	-203	65	2359	635													
	70	3022	17		70	3022	-551	70	3022	549													
	75	4105	-354		75	4105	-1168	75	4105	387													
	80	6238	-1136		80	6238	-2467	80	6238	34													
		85	12573	-3577		85	12573	-6518	85	12573	-1083												

Modèle de Mononobé-Okabé

- \Rightarrow Mécanismes de poussée et butée
- \Rightarrow Prise en compte de la rugosité (δ)
- \Rightarrow Prise en compte du terme de cohésion (R_c)
- \Rightarrow Mêmes limitations qu'en conditions statiques

Webinaire CFMS du 12 Avril 2022	Page 30

Modèle de Mononobé-Okabé

• Solution analytique pour terrain frottant ($\phi \neq 0$, c = 0)

Modèle de Mononobé-Okabé

• Solution analytique pour terrain frottant ($\phi \neq 0$, c = 0)

$$P_{bd} = K_{pd}P_0$$
$$P_0 = \frac{1}{2}(1 + k_v)\gamma H^2$$

avec
$$\tan \theta = \frac{k_h}{1 + k_v}$$

Modèle de Mononobé-Okabé

• Solution analytique pour terrain frottant ($\phi \neq 0, c = 0$)

Modèle de Mononobé-Okabé

• Solution analytique pour terrain cohérent ($\phi = 0, c \neq 0$)

Modèle de Mononobé-Okabé

• Solution analytique pour terrain cohérent ($\phi = 0, c \neq 0$)

Modèle de Mononobé-Okabé

• Solution pour terrain de comportement intermédiaire ($\phi \neq 0, c \neq 0$)

Modèle de Mononobé-Okabé

Solution pour terrain de comportement intermédiaire ($\phi \neq 0, c \neq 0$)

$$P_{ad} = K_{ad} \cdot P_0 - K_{acd} \cdot cH$$
 $\tan \theta = \frac{1}{1}$

Méthode cinématique du calcul à la rupture

• Mise en œuvre pour le cas d'une cinématique translationnelle (surfaces de rupture planes)

Méthode cinématique du calcul à la rupture

Comparaison au modèle de Mononobé-Okabé pour un terrain frottant horizontal

Méthode cinématique du calcul à la rupture

• Mise en œuvre pour le cas d'une cinématique rotationnelle (surfaces de rupture en arcs de spirale)

Méthode cinématique du calcul à la rupture

Comparaison au modèle de Mononobé-Okabé •

ms

	U	pente	cohésion	Mononobe-	Calcul à la rupture	Calcul à la rupture
	(°) talus (°) c (kPa)	Okabe	cinématique plane	cinématique rotation ^{nelle}
H = 10 m	3	0 0	0	570 kN/ml	570 kN/ml	575 kN/ml (+01%)
$\delta/\Phi = 0$	3	0 C	20	305 kN/ml	305 kN/ml	310 kN/ml (+02%)
$\theta = 17^{\circ}$	3	D 16	20	450 kN/ml	450 kN/ml	500 kN/ml (+11%)
	C	0	50	368 kN/ml	368 kN/ml	450 kN/ml (+22%)
C						· · ·

Webinaire CFMS du 12 Avril 2022

Page 42

Méthode cinématique du calcul à la rupture

Capacité à traiter des configurations stratigraphiques complexes

Méthode cinématique du calcul à la rupture

• Exemple d'application : soutènement d'un terrain hétérogène

Page 45

Méthode cinématique du calcul à la rupture

ms

• Exemple d'application : soutènement d'un terrain hétérogène

Webinaire CFMS du 12 Avril 2022

Page 46

Méthode cinématique du calcul à la rupture

ms

• Exemple d'application : soutènement d'un terrain hétérogène

Webinaire CFMS du 12 Avril 2022

Evaluation des poussées et butées dynamiques Méthode cinématique du calcul à la rupture Exemple d'application : soutènement d'un terrain hétérogène Charge regartle $\varphi = 30 \circ c' = 0$ $\varphi = 25^{\circ} c' = 20 kPa$ 35°KPa Configuration réelle Grès avec c' = 50 kPa Pad,H = 810 kN/mlφ = 35° c' = 50 kPa cfms Webinaire CFMS du 12 Avril 2022 Page 48

Méthode cinématique du calcul à la rupture

• Exemple d'application : soutènement d'un terrain hétérogène

Méthode cinématique du calcul à la rupture

• Exemple d'application : soutènement d'un terrain hétérogène

Synthèse	Cohésion du Grès (kPa)	Rugosité δ/φ	Remblai intercalaire	Poussée dynamique (projetée kN/ml)	Poussée statique (projetée kN/ml)	Incrément dynamique (projetée kN/ml)
Sol homogénéisé	0	0	Non	1 540	1210	330
Multicouche 1	20	0	Non	1 215	920	295
Multicouche 2	50	0	Non	870	580	290
Multicouche 3	50	2/3	Oui φ' = 35°	810	625	185
Multicouche 4	> 100	2/3	Oui $\varphi' = 35^{\circ}$	730	625	105

Webinaire CFMS du 12 Avril 2022

Page 50

Modèle de Lancellota

• Une généralisation du modèle de Rankine-Boussinesq avec modification de la gravité

Modèle de Lancellota

• Une généralisation du modèle de Rankine-Boussinesq avec modification de la gravité

Modèle de Lancellota

• Formalisme en contraintes effectives

$$p_{ad} = u + K_{ad}(\sigma_v - u) - 2c'\sqrt{K_{ad}} \qquad p_{bd} = u + K_{pd}(\sigma_v - u) + 2c'\sqrt{K_{pd}} \qquad \theta_{eq} = Atan\left(\alpha_H \frac{\sigma_v}{\sigma_v - u}\right)$$

$$K_{ad} = \left(\frac{1 - \sin \phi}{\cos \theta_{eq} + \sqrt{(\sin \phi)^2 - (\sin \theta_{eq})^2}}\right) \frac{e^{-2\psi_A \tan \phi}}{\cos \theta_{eq}}$$

avec
$$\psi_A = -0.5 \left(\arcsin \frac{\sin \theta_{eq}}{\sin \phi} + \theta_{eq} \right)$$

$$K_{pd} = \left(\frac{1 + \sin \varphi}{\cos \theta_{eq} + \sqrt{(\sin \varphi)^2 - (\sin \theta_{eq})^2}}\right) \frac{e^{+2\psi_{P} \tan \varphi}}{\cos \theta_{eq}}$$

avec
$$\psi_P = 0.5 \left(\arcsin \frac{\sin \theta_{eq}}{\sin \phi} + \theta_{eq} \right)$$

Modèle de Lancellota

• Comparaison aux approches globales de type Mononobé-Okabé ou Calcul à la rupture

Adaptation des tables de Caquot-Kérisel

• Capitaliser sur les acquis de l'ingénierie géotechnique en matière de calcul de soutènements...

Adaptation des tables de Caquot-Kérisel

• Rappel du principe de l'approche pseudo-statique = modification de la gravité

Adaptation des tables de Caquot-Kérisel

• Obtention des coefficients de poussée et (surtout) de butée avec rotation θ du modèle

Adaptation des tables de Caquot-Kérisel

• Obtention des coefficients de poussée et (surtout) de butée avec rotation θ du modèle

Page 59

- Approches globales
 - ⇒ Modèle de Mononobé-Okabé pour estimer les incréments poussée/butée dans les cas courants
 - ⇒ Calcul à la rupture pour des stratigraphies complexes et une gestion plus fine de la rugosité et de la cohésion (notamment pour la butée)
- Approches locales
 - \Rightarrow Modèle de Lancellota = approche en contraintes effectives présentant un intérêt pratique
 - ⇒ Utilisation des abaques de Caquot Kérisel avec gravité modifiée, approche qui s'inscrit dans la continuité de la pratique des calculs de soutènement sous action statique.

Partie I – 12 Avril 2022 de 10h30 à 12h30

- Stratégie de dimensionnement sous séisme
- Evaluation des poussées et butées dynamiques
- REX post-séisme en milieux urbain et maritime

Webinaire CFMS du 12 Avril 2022

Page 60