

# TULIP – INFLUENCE DE LA LOI DE COMPORTEMENT

14 octobre 2021

#### LOI DE COMPORTEMENT ANL

#### Problématique : Réduire la largeur de la cuvette de tassement estimée par MEF

- Analyse des spécificités de l'excavation du tunnel
  - Chargement principalement déviatorique
  - Déformations avant rupture confinement
  - Dépendance forte au module de cisaillement transverse
- Proposer des mécanismes simples et indépendants

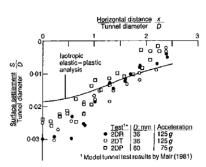



Fig. 11. Observed and predicted settlement troughs assuming isotropy; C/D = 1.67;  $\sigma_T = 92 \text{ kPa}$ 

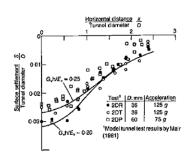
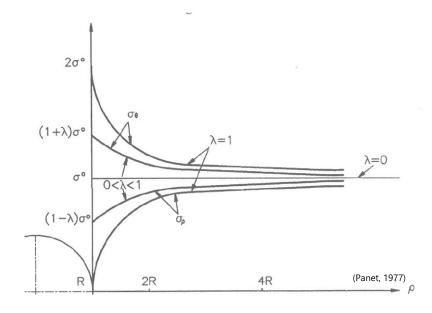




Fig. 13. Effect of anisotropic ratio  $G_{\rm vh}/E_{\rm v}$  on surface settlement trough

(Lee, 1989)



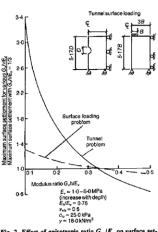
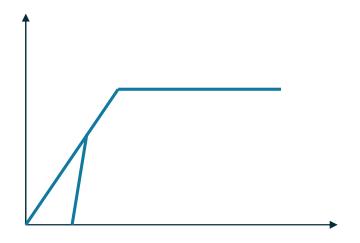


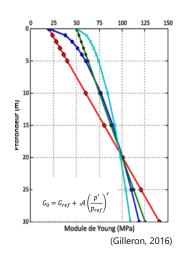

Fig. 2. Effect of anisotropic ratio  $G_{ub}/E_u$  on surface settlement ratio  $R_u$  for surface loading and tunnelling problem

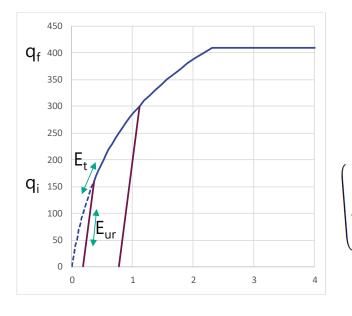
(Lee, 1989)

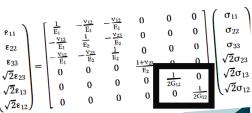


#### LOI DE COMPORTEMENT ANL


#### Réduire la largeur de la cuvette de tassement

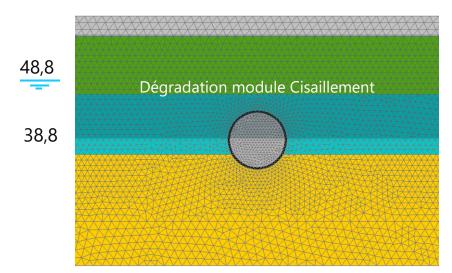

- Analyse des spécificités de l'excavation du tunnel
  - Chargement principalement déviatorique
  - Déformations avant rupture confinement
  - Dépendance forte au module de cisaillement transverse
- Proposer des mécanismes simples et indépendants

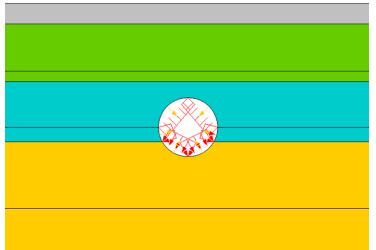

#### Mécanismes intégrés – CESAR NELAS24

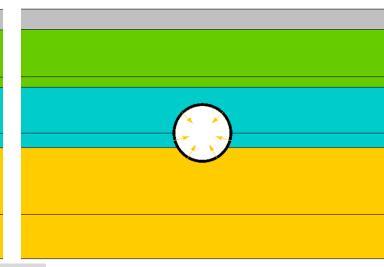

- Élasticité linéaire avec rupture de Mohr-Coulomb
- Déchargement/rechargement ⇔ E<sub>ur</sub>
- Dépendance de la raideur à la contrainte moyenne ⇔ coefficient *m* (HSM)
- Élasticité non linéaire sous chargement déviatorique ⇔ écrouissage déviatorique
- Isotropie transverse (spécificité tunnel superficiel)
- Pas de critère isotrope / cap (spécificité du tunnel)







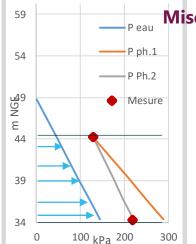

# MODÉLISATION DU CREUSEMENT

#### **Modèle 2D avec CESAR-LCPC**

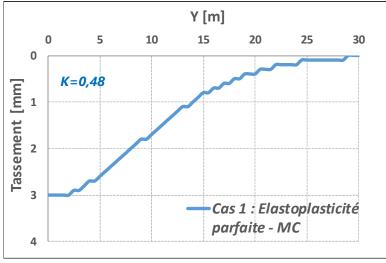






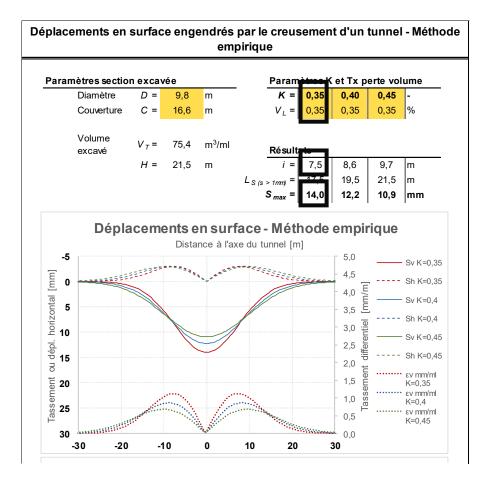

**Initialisation des contraintes effectives** 

Déconfinement 90 % Pression explicite

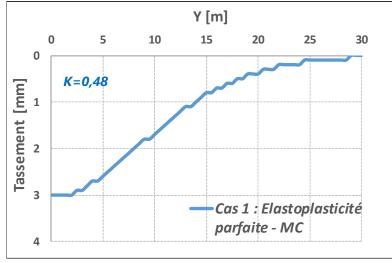

**TABLEAU 1. DONNÉES GÉOTECHNIQUES TUNNEL** 

| Formation                 | Côte NGF<br>toit | γ <sub>h</sub><br>[kN m <sup>-3</sup> ] | E <sub>M-h</sub><br>[MPa] | ν    | c'<br>[kPa] | φ'<br>[°] | ψ'<br>[°] |
|---------------------------|------------------|-----------------------------------------|---------------------------|------|-------------|-----------|-----------|
| Remblais (RB)             | 60,3             | 19                                      | 18                        | 0,30 | 0           | 28        | 0         |
| Calcaires Saint-Ouen (SO) | 56,8             | 18                                      | 34                        | 0,30 | 20          | 33        | 0         |
| Sables de Beauchamp (SB)  | 47               | 21                                      | 75                        | 0,37 | 10          | 33        | 3         |
| Marnes et Caillasses (MC) | 36,8             | 20                                      | 187                       | 0,30 | 50          | 35        | 0         |






Mise en place de l'anneau de voussoirs

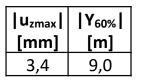


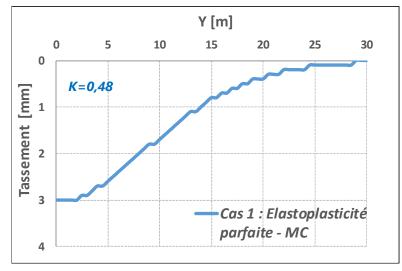

| u <sub>zmax</sub> | Y <sub>60%</sub> |  |  |
|-------------------|------------------|--|--|
| [mm]              | [m]              |  |  |
| 3,0               | 10,0             |  |  |
| 3,0               | 10,0             |  |  |

$$E_t = \frac{\lambda E_{M-h}}{\alpha}$$
  $\lambda = 2, \alpha = 0,5$ 

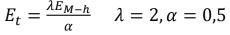


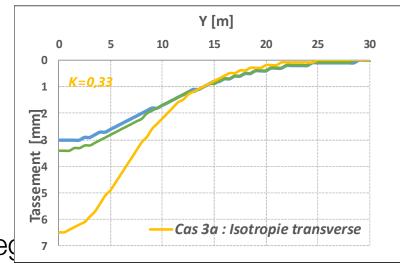




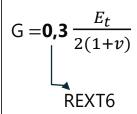


| E. | $=\frac{\lambda E_{M-h}}{\alpha}$ | $\lambda = 2, \alpha = 0.5$ |
|----|-----------------------------------|-----------------------------|
| -ι | $\alpha$                          | 70 = 0,00                   |

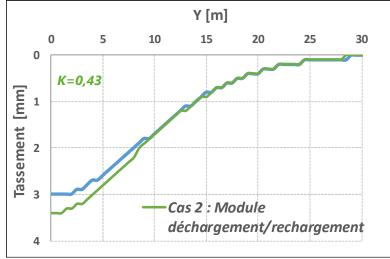
| u <sub>zmax</sub>  <br>[mm] | Y <sub>60%</sub>  <br>[m] |  |
|-----------------------------|---------------------------|--|
| 3,0                         | 10,0                      |  |

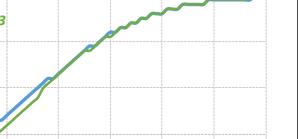




$$E_{ur} = 3.E_t$$







| u <sub>zmax</sub> | Y <sub>60%</sub> |
|-------------------|------------------|
| [mm]              | [m]              |
| 3,0               | 10,0             |





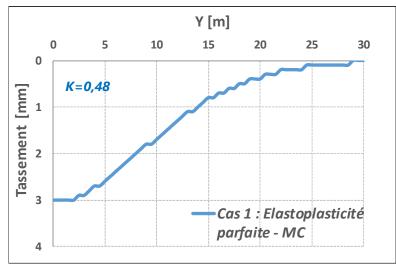

| u <sub>zmax</sub> | Y <sub>60%</sub> |
|-------------------|------------------|
| [mm]              | [m]              |
| 6,5               | 7,0              |



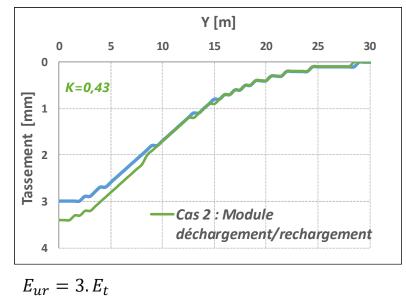




|Y<sub>60%</sub>|

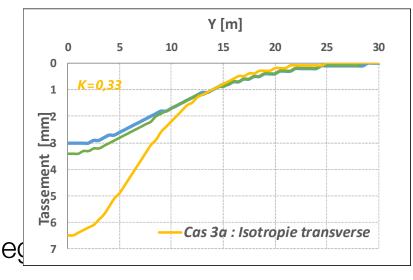

[m]

9,0


|u<sub>zmax</sub>|

[mm]

3,4



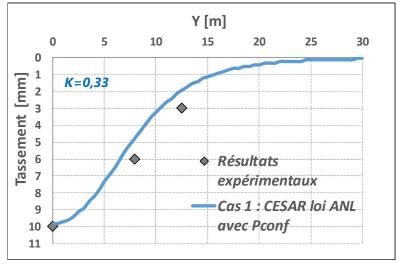

| u <sub>zmax</sub> | Y <sub>60%</sub> |  |  |
|-------------------|------------------|--|--|
| [mm]              | [m]              |  |  |
| 3,0               | 10,0             |  |  |



| u <sub>zmax</sub> | _   |
|-------------------|-----|
| 3,4               | 9,0 |

$$E_t = \frac{\lambda E_{M-h}}{\alpha}$$
  $\lambda = 2, \alpha = 0.5$ 



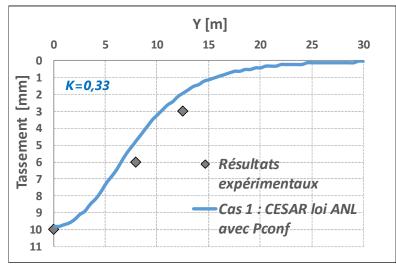

| u <sub>zmax</sub> | Y <sub>60%</sub> |  |  |
|-------------------|------------------|--|--|
| [mm]              | [m]              |  |  |
| 6,5               | 7,0              |  |  |

G =**0,3** 
$$\frac{E_t}{2(1+v)}$$

| 5    | 10       | 15        | 20          | 25                    | -                            |
|------|----------|-----------|-------------|-----------------------|------------------------------|
|      |          |           | _0          | 25                    | 30                           |
| 0,33 |          |           |             |                       |                              |
|      |          |           |             |                       |                              |
|      |          |           |             |                       |                              |
|      | <b>/</b> |           |             |                       |                              |
|      |          |           |             |                       |                              |
| /    |          |           |             |                       |                              |
|      |          | as 4 : El | asticité l  | non liné              | aire                         |
|      |          |           | —Cas 4 : El | —Cas 4 : Elasticité i | —Cas 4 : Elasticité non liné |

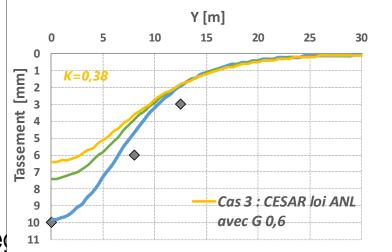
| u <sub>zmax</sub>  <br>[mm] | Y <sub>60%</sub>  <br>[m]      |      |
|-----------------------------|--------------------------------|------|
| 7,3                         | 7,0                            |      |
|                             | Raideur<br>confine<br>surestin | ment |

## PHASE 2 – CLASSE C

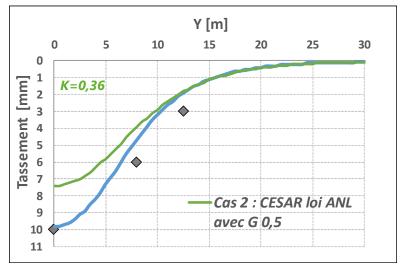



| u <sub>zmax</sub> | Y <sub>60%</sub> |
|-------------------|------------------|
| [mm]              | [m]              |
| 9,8               | 7,0              |

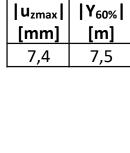
Recalage pression de confinement (u<sub>z</sub>+2,5 mm)



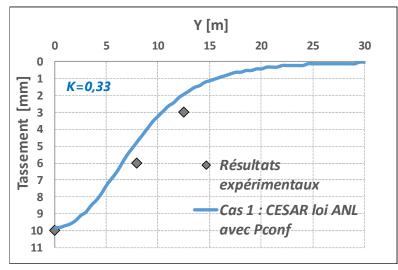

#### PHASE 2 – CLASSE C



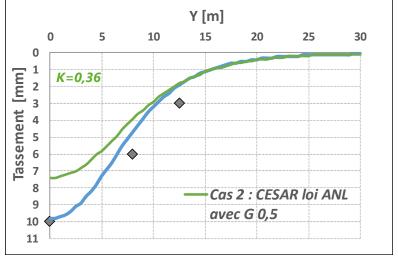

| u <sub>zmax</sub> | Y <sub>60%</sub> |
|-------------------|------------------|
| [mm]              | [m]              |
| 9,8               | 7,0              |


Recalage pression de confinement (u<sub>z</sub>+2,5 mm)



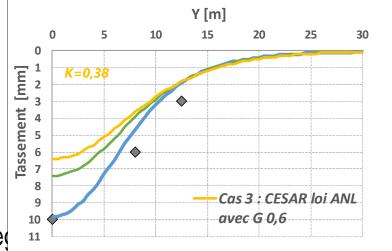

| u <sub>zmax</sub> | Y <sub>60%</sub> |
|-------------------|------------------|
| [mm]              | [m]              |
| 6,4               | 8,0              |




Itération 1 Module de cisaillement transverse

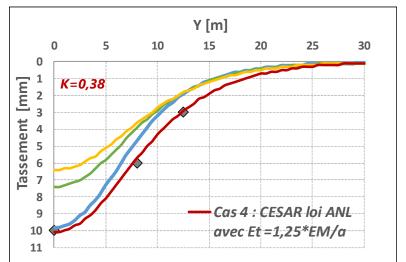


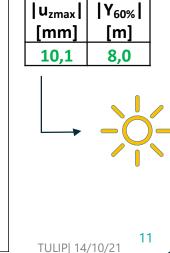
#### PHASE 2 – CLASSE C




| u <sub>zmax</sub> | Y <sub>60%</sub> |
|-------------------|------------------|
| [mm]              | [m]              |
| 9,8               | 7,0              |




|Y<sub>60%</sub>| **u**zmax [mm][m] 7,5 7,4


Recalage pression de confinement (u<sub>z</sub>+2,5 mm)



Itération 2 Module de cisaillement transverse

Itération 1 Module de cisaillement transverse





Recalage module de raideur

|Y<sub>60%</sub>|

[m]

8,0

|u<sub>zmax</sub>|

[mm]

6,4

# **SYNTHÈSE**

Bonne compétence de la loi de comportement à reproduire les tassements en surface, en amplitude et en largeur.

Coefficient de dégradation du module de cisaillement à confirmer sur d'autres rétro-analyses. À associer avec des modélisations plus complexe du creusement.

Opportunité de développement d'une méthodologie pour l'étude d'interaction pieu/tunnel.



