

An international benchmark on numerical simulation of 1-D nonlinear site effect. Verification phase on idealistic cases and validation on real sites

J. Régnier, ¹ <u>L.F. Bonilla</u>⁴, P.Y. Bard³, E. Bertrand¹, H. Kawase², F. Hollender⁵, M. Marrot¹, D. Sicilia⁶ and the PRENOLIN participants*

¹ CEREMA Dter Méditerranée, laboratoire de Nice ² Kyoto University ³ISTerre, Grenoble ⁴ IFSTTAR, Marne-la-Vallée ⁵ CEA, Cadarache ⁶EDF, Aix-en-Provence

* D.Assimaki (Gorgia tech), D. Boldini (Univ. Bologna), S.Iai (DPRI), S.Kramer (Univ. Washington), E.Foerster (CEA), C.Gélis (IRSN), G.Gazetas (NTUA), J.Gingery (Kleinfelder/UCSD), Y.Hashash (Univ. of Illinois), P.Moczo (CUB), S.Foti (Politecnico di Torino), G.Lanzo (Univ. Rome), F.Lopez-Caballero (ECP), D.Roten (ETHZ), K.Pitilakis (AUTH), F.DeMartin (BRGM), B.Jeremic (UCD), A.Nieto-Ferro (EDF), M.P.Santisi (Univ. Nice), D.Mercerat (CEREMA).

Outline

- 1- Presentation of the project goals and organization
- 2- Verification phase

- 3- Validation phase
- 4- Conclusions and perspectives

1- Background and motivation

Accounting for local conditions in hazard assessment for nuclear facilities – France "Special sites" : heavy expectations on numerical approach

Previous Verification / validation exercises

- •ESG1992 : Parkfield Turkey Flat + Ashigara Valley
- Blind exercises variable SHAKE results...

•(ESG1998 Kobe : source + site, not blind) •SCEC : Los Angeles area, 3DL (LF + BB) •ESG2006 : Grenoble, 2DL/3DL

- •Turkey Flat, NL post Parkfield 2004
- •E2VP : Volvi/Euroseistest, 3DL + 2DNL (+2DL) -

•VELACS : Liquefaction (centrifuge)

•

Sites not totally 1D Difficulties with deconvolution of outcrop motion

2-D too complicated to analyze NL soil model implementation

Lessons for Prenolin

Be less ambitious / more humble

reach good results within a limited amount of time (2 years)

Check NL models on 1D soil columns

- On simple sites with unambiguous data and models
 - With strong motion data (vertical arrays)
 - With well-controlled lab tests / soil parameters
 - As close as possible to 1D sites
- Our *a priori* choice
 - Simple 1D "Canonical" models
 - Carefully selected KiK-net sites

Expected outcome

- Verification and validation of NL codes in simple conditions
 - 1D, no liquefaction, simple shear stress analyses
 - Real and canonical sites
- Assessment of epistemic uncertainties
- Guidelines for using deterministic, physics-based, NL simulation in (D+P) SHA
 - Required geotechnical / geophysical measurements
 - Quality criteria and control for NL computations
 - Corresponding budgets and feasibility

The participants

Co-organisateurs

- EdF, Clamart
- ECP, Paris

Some additional information

Overview teams and codes

21 Participant teams / 26 Codes tested

Same codes tested by different teams Some share similar nonlinear models

Variability inter- nonlinear models
 Variability inter- Numerical method (with same nonlinear model)
 Variability inter-Users (same codes)

Road map

Numerical codes and team appellation

- SeismoSoil (A-0),
- FLIP (B-0),
- PSNL (C-0),
- CYBERQUAKE (D-0),
- NOAH-2D (E-0),
- DEEPSOIL (J-0 EQL and J-1, F-0 and M-2,)
- NL-DYAS (G-0),
- OPENSEES (H-0),
- 1DFD-NL-IM (K-0),
- ICFEP (L-1),
- FLAC.7.00 (M-0),
- DMOD2000 (M-1),
- GEFDYN (N-0),
- EPISPEC1D (Q-0),
- real ESSI (R-0),
- ASTER (S-0),
- SCOSSÀ-1,2 (T-0),
- SWAP-3C (U-0),
- GDNL (Y-0),
- SANISAND (W-0),
- EERA (Z-0)

• PLAXIS (Z-1).

Different code implemenation

Discret. scheme:

- (i) finite-element (B-0, C-0, D-0, F-0, H-0, J-0, L-1, M-0, M-2, N-0, Q-0, R-0, S-0, T-0, U-0, Y-0 and Z-1),
- (ii) finite-difference (A-0, E-0, G-0 and K-0).

Backbone curve

- (i) lal's model (B-0, E-0, Q-0)
- (ii) Iwan's model (K-0, L-1, U-0, Y-0),
- (iii) Philips and Hashash's model (F-0, J-O, M-2, T-0),
- (iv) all other models.

linear att. Imp.

- frequency-independent attenuation (A-0, E-0, F-0, J-0, J-1, K-0, M-2, Q-0 and Z-0),
- (ii) Rayleigh damping (B-0, G-0, H-0, L-1, M-0, R-0, S-0, T-0, Y-0 and <u>Z-1),</u>
- (iii) low strain hysteretic damping (C-0, N-0, D-0 and R-0).

Loading/unloading

- (i) No masing (A-0, B-0, E-0, J-0),
- (ii) Masing rule (all other teams).

Idealistic cases

Idealistic cases: soil parameters

What did we ask for?

Acceleration THs a(t, z_i), Δt = 0.01s

```
\checkmark Z<sub>1</sub> = 0
```

```
\checkmark Zn = H
```

```
✓ Delta z = H/10
```

• Strains γ(t, z_i)

```
    Stresses τ(t, z<sub>i</sub>)
```

```
✓ Z_1 = H/20
✓ Zn = 19H/20
```

```
✓ Delta z = H/10
```

 G/Gmax degradation and damping curves per soil layer

Results: Linear elastic and visco-elastic cases

Acceleration: Ricker Pulse GL-0

Profile: P1

Computation: Viscoelastic

Condition sub: Rigid

- From it-1 to it-2: Convergence almost achieved !
- Most of the divergences came from minor mistakes
 - Pb in units,
 - Pb of numerical dispersion
 - Pb of damping calibration (still to be done!)
 - Pb in input motion consideration and soil properties

Normalised FFT

What is the effect of the frequency content of the input?

Epistemic uncertainty: example P1

Results: nonlinear computations

Can we reduce the epistemic uncertainty?

✓ Still some issues of interpretation : Strength profile, large effect on results

Results: nonlinear computations

Can we reduce the epistemic uncertainty?

- ✓ Still some issues of interpretation : Strength profile, large effect on results
- ✓ Effect of the damping control: stress-strain curves \neq codes same NL models

Site selection for VALIDATION phase

criteria

- 1- Sites with 1-D configuration
- 2- Sites having recorded weak and strong motion
- 3- Sites with non-linear soil behaviour (Cyclic mobility or not)

Site characterization: Example Sendai

			Neasurements				quantities (SENDAI)																	
Γ	Accumition stratum		Settling Pore size/new		Tests in eite			Bethid for detaining bell settline			Petroat tait and and													
Depth (m)	disafection	Reflectur		Detlang Core(0.5m)	fard personalize text]	ISet Sutting (LTS)	PSS, Charpension)	PSR (Deverband)	using this walked take	trade tube sampler	core pack sampler	density	WARM CONSIST	particle size distribution	plade level and plade level	bulk density	manual acceptions	competitivion situatia ter	Competence installed	Squefactory and (sand	(vand) (victor) (m)	United Cyclique Test.	Instantined tompress	Oneth Distriction (e)(
	Chiefe I		-	÷	:			:				٠	٠	÷				-				-	2	
4	-tow BE clay BE			ŧ	÷			1	F	1												-		
111111			16			,			8			La se De pa	abo edir ens artic	ne ne sity	ory nts , W e si	ate	eas er c dis	sure ont	em ent	ent t on	ts ir	ו		
+ multiple MASW lines						N-SPT Vs						 Laboratory measurements at rock: Bulk density Unconfined compressional test Triaxial cyclic test 												

Soil parameters for the simulations

Input motion used

9 input motions for each site : 3 PGA levels x 3 freq. Contents:

- Sendai PGA surf. From 10 to 400 cm/s²
- **KSRH10** PGA surf. From 60 to 440 cm/s²

Time-dependent spectral ratio

INPUT 1 Observation

Time-dependent spectral ratio

B-0

Validation phase Iteration 1

Main Conclusions (relative to empirical observations):

- Systematically **over-estimated** simulated **transfer functions**
- Systematically under-estimated effects of simulated non-linear behavior

Possible explanations of result variability:

- ** Uncertain or inadequate soil parameters
- * Non-vertically incident plane S waves
- * Component-to-component coupling not accounted for in 1D, single component computations
- * Non-1D soil conditions (2D or 3D)

(**) Definition of a new soil column from GT5 and maybe some other teams (S-0...)

(*) Points which were verified in an internal report « *PRENOLIN: Description of the input motions used in the Validation phase* » and whose results form the basis of the requested new calculations ²³

New calculations to be performed

Imposed and preferred models

Team J did effective stress analysis

Envelope of the results

Conclusions

NEED for iterations

• What did we observe?

Fit is improved from iteration-1 to iteration-2 or more...

- Elastic parameters calibration is very important
- Physical attenuation still needs to be implemented in most FEM codes

• What is needed?

- Field data to calibrate laboratory tests as well to study linear response of the soil column (borehole data is the best for this)
- The best results for this benchmark came when fitting observations. Not a blind exercise anymore!
 - Low strain damping from weak motion recordings
 - *NL curves from literature for similar soils (and strong motion response...)*
- Input motion: Frequency content is very important (this is source/site dependent)
- Soil properties : Large effects on the results
 - (low-strain, NL curves)
- USE of more than one nonlinear code to capture epistemic variability
- TRAINED people to use these codes