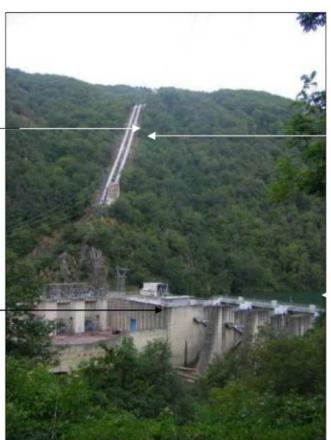

CONDUITE FORCÉE N°2 DU POUGET

OBJECTIFS

- Objectif : remplacer la partie frettée de la CF n°2 de la centrale hydroélectrique du Pouget, sur le Tarn (12),
- Problématique : des calculs de stabilité réalisés par EDF ont montré la non stabilité des massifs en situation actuelle alors qu'il n'y a aucun désordre apparent.

LOCALISATION

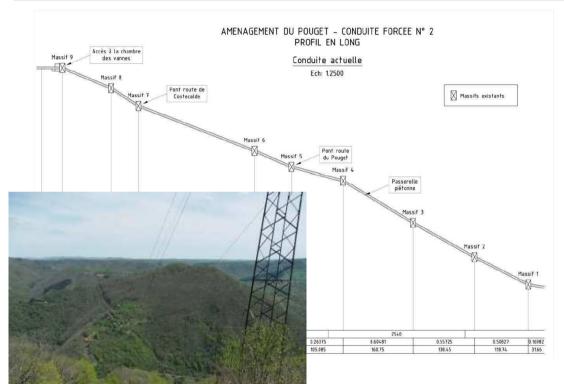

Aménagement : Caractéristiques des centrales Hydroélectriques du POUGET-TRUEL

EDF; GEH Tarn-Agoût

Centrale du Truel

 Aveyron, Nord Ouest de Sainte Affrique

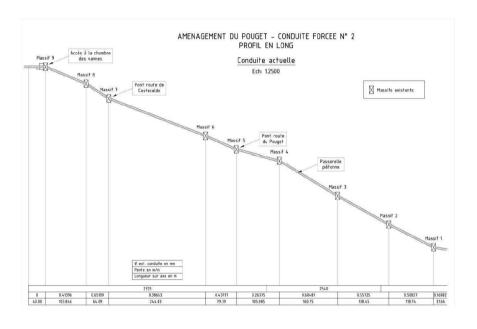
 La centrale hydroélectrique du Pouget turbine les apports collectés dans une série de retenues situées sur le plateau du Levézou, en rive droite du Tarn



Retenue du Tru

CF1

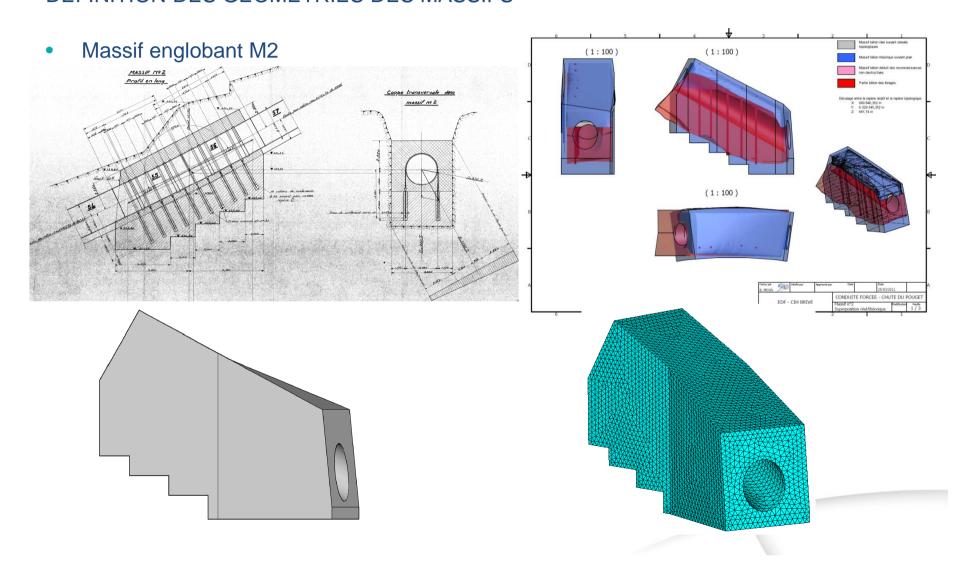
CONTEXTE GENERAL



- CF1 et CF2 entraxe =5,5m
- CF2:
- 9 massifs BA (M1 à M9)
- 87 selettes en béton
- Conduite à « coudes bloqués » sans joint de dilatation
- Linéaire environ 1030m
- Majorité : Tuyaux auto-frettés au moyen de cables
- Viroles lisses (M6-M7)
- Cerces rigides (appuis intermédiaires (sellettes et certains coudes)

INTERVENANTS

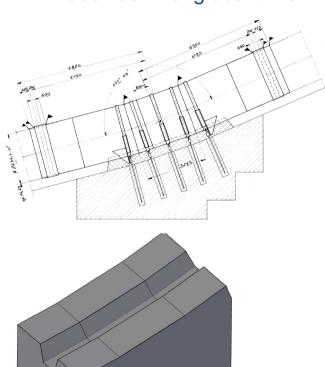
MOA : EDF(MM. Bordat, Domitile)

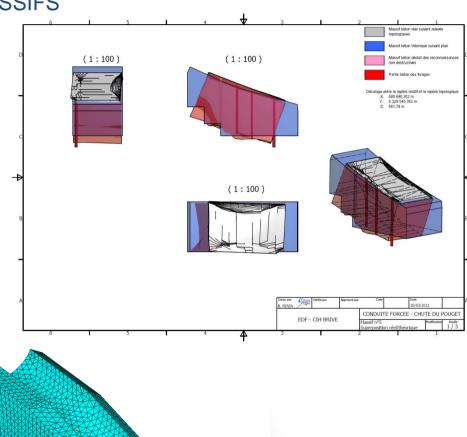


- Modélisation tridimensionnelle via ANSYS de l'ensemble de la CF avec ses 9 massifs d'ancrage (INGEROP)
- Mission géotechnique (GEOS) : détermination des ressorts sur toutes les faces des massifs
 - Données :
- Géométrie :Geoscan, Falco
- Sondages: HGT
- Analyse géologique/géotechnique : TEGG

GEOMETRIE DES MASSIFS

DEFINITION DES GEOMETRIES DES MASSIFS

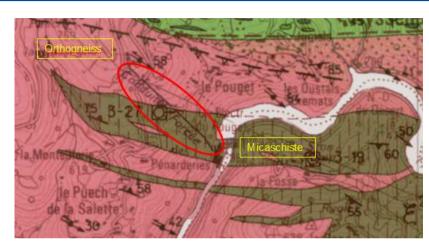




GEOMETRIE DES MASSIFS

DEFINITION DES GEOMETRIES DES MASSIFS

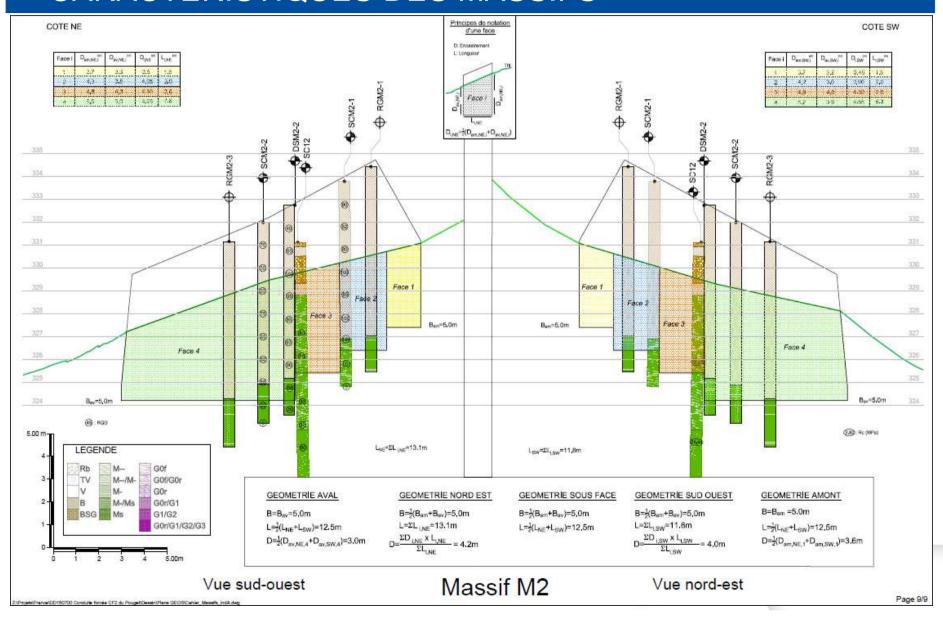
• Massif semi-englobant M5


CONTEXTE GEOLOGIQUE (TEGG)

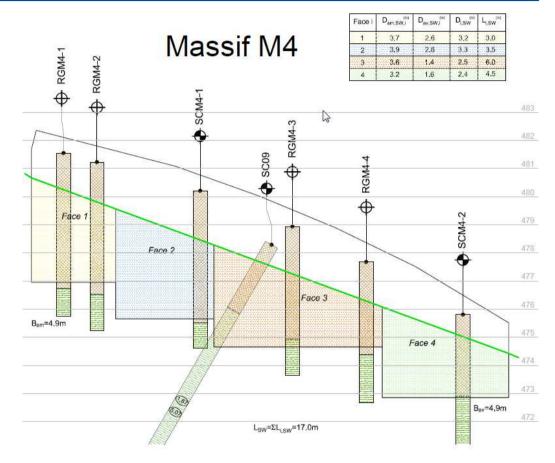
2 formations d'origine métamorphique :

- Micaschistes entre M1 et M6
- Orthogneiss entre M7 et M9
- ✓ Sous-découpages en plusieurs faciès d'altération (très altéré : G0f / M-- à peu ou pas altéré : G2/G3 / Ms)

- ▲ Etude particulière liée aux discontinuités (OK, réalisée par TEGG)
- Objectif: calcul de l'interaction sol / structure (ressorts) sur chaque face des massifs


Fondations au rocher

Reconnaissance des massifs rocheux,
conception et dimensionnement des fondations


CARACTERISTIQUES DES MASSIFS

CARACTERISTIQUES DES MASSIFS

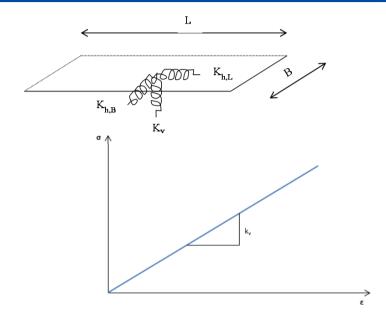
- Massifs à géométrie complexe : pour chaque face latérale, décomposition en sous-faces
- Pour chaque face, détermination de la longueur L, de la largeur B et de l'encastrement D, moyennes ou sommes de chaque sous-face.
- Importance de la position du TN (à partir duquel sont réalisés les sondages), d'autant plus que la zone est escarpée...
- TN différent côté Sud-Ouest (terrain naturel réel) et Nord-Est (trace de CF1)

GEOMETRIE SOUS FACE

 $B=\frac{1}{2}(B_{am}+B_{av})=4.9m$ $L=\frac{1}{2}(L_{NE}+L_{SW})=17.0m$

GEOMETRIE SUD OUEST

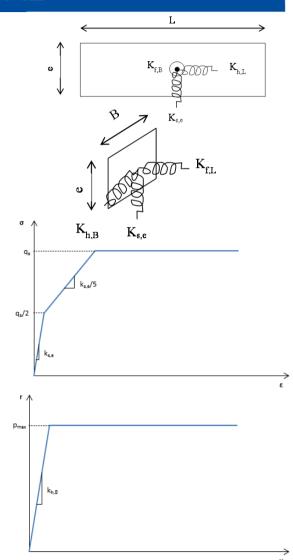
$$\begin{split} &B = \frac{1}{2} (B_{am} + B_{av}) = 4.9 m \\ &L = \Sigma L_{i,SW} = 17.0 m \\ &D = \frac{\Sigma D_{i,SW} \times L_{i,SW}}{\Sigma L_{i,SW}} = 2.8 m \end{split}$$


GEOMETRIE AMONT

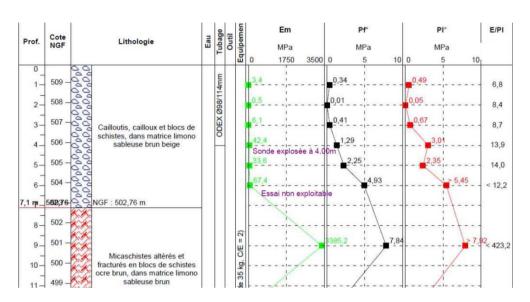
$$\begin{split} &B{=}B_{am}=4.9m\\ &L{=}\frac{1}{2}(L_{NE}{+}L_{SW}){=}17.0m\\ &D{=}\frac{1}{2}(D_{am,NE,1}{+}D_{am,SW,1}){=}4.2m \end{split}$$

REACTIONS EN SOUS-FACE

- Pour chaque face, 3 ressorts: 1 vertical et 2 horizontaux
- Ressort vertical : Kv
 - Pente: k_v
 - Par le rapport charge sur tassement
 - Selon NF P 94-261
 - Selon FEMA 256
 - Selon SIEFFERT
 - Palier : aucun rentré dans le modèle, mais limité par la capacité portante
- Ressorts horizontaux : K_{h:B} et K_{h:L}
 - Pentes: k_v
 - Selon NF P 94-261
 - Selon FEMA 256
 - Selon SIEFFERT
 - Paliers : en fonction de la charge verticale et de la surface comprimée



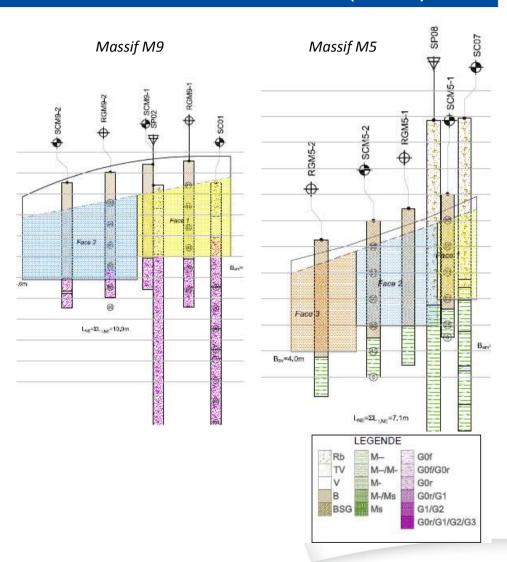
REACTIONS LATERALES ET AMONT/AVAL


- Ressort vertical: K_{s:e}
 - Pente: k_{s:e}
 - Calculé selon Frank & Zhao (comme pour les pieux)
 - Abattement compris entre 50% (au TN) et 0% (à la base du massif) pour tenir compte de la proximité de la surface
 - Palier:
 - q_s pour les sols ; τ_u pour les roches
 - 2 paliers
 - Double abattement compris entre 75% (au TN) et 0% (à la base du massif) pour tenir compte de la proximité de la surface et de la proximité d'un talus
- Réaction frontale : K_{h:B}
 - Pentes : k_{h;B}
 - Selon VESIC
 - Selon NF P 94-262
 - Paliers:
 - Sols : pression de fluage p_f*
 - Roche : en fonction de la cohésion et de l'angle de frottement du massif homogénéisé
- Frottement horizontal : K_{h:L}
 - Pentes : $K_{h;L} = K_{f;B}$ (NF P 94-262)
 - Paliers : identique à palier de K_{s:e}

SYNTHESE DES DONNEES NECESSAIRES

- Eléments géométriques : B, L, D
- Nature de la base et des côtés : sol ou roche ; épaisseurs de couche, fracturation si roche, ...
- Si sol : E, p_I, α, c', φ'
- Si roche :
 - Paramètres de matrice : γ, Rc, RQD, ...
 - Classification du massif : RMR, GSI, Q_{Barton}, ...
 - · Critère de Hoek & Brown : m, s, a
 - Paramètres du massif rocheux homogénéisé : c, φ
 - Déformation du massif rocheux : E_{massif}

Sondage SC7 6.00 à 7.00m 7.00 à 8.00 m

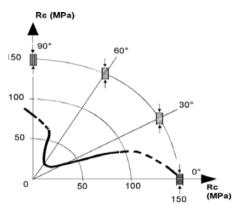


PARAMÈTRES POUR LES TERRAINS MEUBLES (SOL)

- Concerne uniquement les faces latérales de M5 et une partie des faces latérales de M9 (jusqu'à 2,2m/TN)
- 1 seul sondage pressiométrique par massif : détermination « simple » de E_M, p_I,
- Approche de φ' par corrélation (qui suppose que c' = 0 kPa) :

$$\varphi' = 24 + 4 \cdot \frac{\log\left(\frac{p_l}{2.5}\right)}{\log 2}$$
; p_l en bars

- La valeur de α est prise égale à :
 - 1/3 pour les schistes
 - 2/3 pour les gneiss
- Le module de déformation est calculé par la relation E_M / α

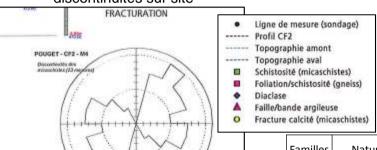


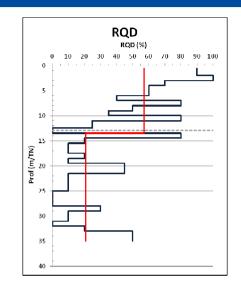
Paramètres physiques issus d'essais en laboratoire :

- Teneur en eau, poids volumiques sec (méthode des pesées ou méthode géométrique)
- Résistances à la compression uniaxiale Rc et à la traction Rt (normalement fonction des plans de discontinuités observés sur l'échantillon).

- Détermination d'un indice de fragilité FR = Rc/Rt : généralement FR < 10, indiquant une roche peu fragile
- Mesure directe du module d'Young de la matrice et comparaison à Rc, via le ratio des modules MR (logiciel ROCLAB):

Pour des schistes : MR = 675±425
Pour des gneiss : MR = 525±225




Paramètres de fracturation :

POUGET - CF2 - M4
Discondinuités des micaschistes (23 mystures)

 Détermination de la valeur de RQD (nombre d'éléments de longueur > 10 cm dans un 1m de carotte)

 Utilisation des données de TEGG pour le repérage des familles de discontinuités sur site

Familles	Nature	Orientation/Pen dage	Extension estimée	Espacement	Rugosité	Altération des épontes	Ouverture	Remplissage
Fs1	Schistosité et diaclases	b: N115±15°E, 50±10°N	m à pluri-m	schistosité : cm	lisse pour la schistosité	Schistosité altérée	Diaclases : mm Failles : pluri-dm (?)	diaclases argileuses; failles argileuses à graves
Fs2	Bandes argileuses	a: N30±5°E, 90° b: N40±15°E, 60±10°E	pluri-m	pluri-m	-	-	cm à pluri- cm	Argile
Fs3	Schistosité, faille	a: N65±5°E, 80°N b: N60±20°E, 35±10°N	pluri-m	pluri-m	-	Roche altérée, argilisée, cailloux	failles : pluri-dm	Argile, cailloux
Fs4	Schistosité et diaclases	N120±20°E, 15±10°N	m à pluri-m	-	-	-	schistosité fermée ; diaclases : pluri-mm	diaclases argilisées

Familles de discontinuités rencontrées et RQD au droit du massif M4

Classifications des massifs rocheux :

• Classification RMR de Bienawski (à partir de Rc et RQD)

32 (M5) < RMR < 65 (M4)

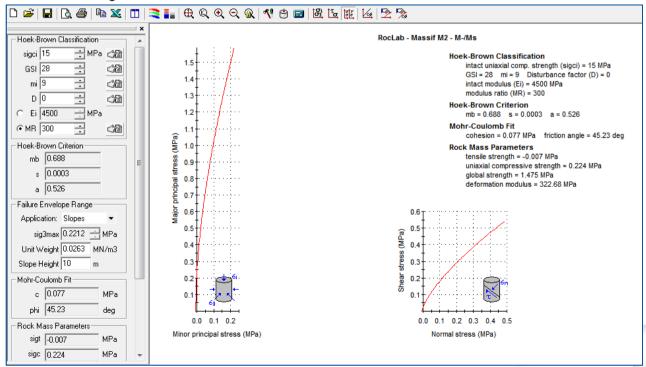
- Indice Q de Barton (plutôt adapté aux tunnels...)
- Détermination du GSI (Geological Strength Index) de Hoek

25 (M5) < GSI < 60 (M4)

- A partir du RMR : GSI = RMR' 5 (RMR' > 23)
- A partir d'abaques

A.	PARAN	IETRES DE C	LASSIFICATION	ET NOTATIONS CO	ORRESPONDANTES									
	Par	amètres			Plages de vale	urs				1	SURE	CE CON	IDITIONS	
	Résistance	Indice Franklin	> 10 MPa	4 - 10 MPa	2 - 4 MPa	1 - 2 MPa	Pour les faibles valeurs utiliser la résistance en compres				JUNIF	r	TITIONS	1==
1	de la roche (matrice)	Résist. compr. uniax. 0,	> 250 MPa	100 - 250 MPa	50 - 100 MPa	25 - 50 MPa	5 - 25 1 - 5 MPa MPa	<] MPa		VERY GOOD	GOOD	FAIR	POOR	VERY POOR
		Notation	15	12	7	4	2 1	0	STRUCTURE	DECRE	ASING SL	IRFACE (VTLIALIC	\Rightarrow
2	000000	RQD	90% - 100%	75% - 90 %	50% - 75%	25% - 50%	< 25%		STRUCTURE	DEGINE	1	1 7 7	+	+
_		Notation			INTACT OR MASSIVE - intact	V/	/ /	V/						
3	100	eut des discentinaités	> 2 m	0,6 m - 2 m	200 mm - 600 mm	60 mm - 200 mm	< 60 mm		rock specimens or massive in	90 /	X / ,	X / .	$1_{N/A}$	1
		Notation	20	15	10	8	5		city rook with fow widely append	1/22 /	/ /	V /	J N/A	N/A
4	Nature des	discontinuités (voir E)	Surfaces très ruguesses Non continues Epontes en contact Epontes non abérées	Surfaces légérement ragueuses Equisseur < 1 mm Epontes fablement altérées	Surfaces légèrement cagassuses Epuisseur < 1 mm Epontes fortement altérées	Surfaces lustrées cu Remplissage < 5 mm cu Epaisseur de 1 à 5 mm	Remplissage mou > 5 os Epsisseur > 5 mm Joint continu		discontinuities	/	//			
		Notation	30	25	20	10	0		disturbed rock mass consisting	V	70 /	V /	X / .	1//
	_	Débit sur 10 m de longueur de tunnel (O'min)	Aucun	< 10 Umin	10 à 25 Vmin	25 à 125 Ivin	> 125 t/min		of cubical blocks formed by three intersecting discontinuity sets		60	V/	V/	V / .
5	Ean	Ratio : pression eau / contr. princ. o _i	0	< 0,1	0,1 - 0,2	0,2 - 0,5	> 0,5		VERY BLOCKY- interlocked, partially disturbed mass with multi-faceted angular blocks		//	1//	1//	1//
		Conditions générales	Complétement sec	Hamide 10	Moullé	Science.	Debitant		partially disturbed mass with	1//	1 /	50 /	X /	V / ,
_		Notation	15			4			multi-faceted angular blocks formed by 4 or more joint sets	/ /	/ /	1//	4 / /	1 / /
					Somme des notations des pa					\angle	\angle	V/	1/_/	1/_/
B.	AJUST	EMENT DE LA	VALEUR DE R	MR EN FONCTION I	DE L'ORIENTATION DES				BLOCKY/DISTURBED/SEAMY	1//	/ /	T,40 -	<i>X</i> /	V /
	Directio	n et pendage	Très favorable	Favorable	Moyen	Défavorable	Très défavorab	ole	- folded with angular blocks	Y /	/ /	1/ /	4 / .	1//
	1000	Tunnels	0	- 2	-5	- 10	- 12		formed by many intersecting	1//	<i>Y</i> /	V /	1//	1//
Not	ation	Fondations	0	- 2	-7	- 15	- 25		formed by many intersecting discontinuity sets. Persistence	1/ /	/ /	1 /	30 /	1/ /
		Talus	0	-5	-25	- 50	- 60		of bedding planes or schistosity	\mathbf{Y}	/ /		/ /	<i>Y</i> /
C.	CLASS	ES DE MASSI	F ROCHEUX DET	TERMINEES PAR LI	ERMR				DISINTEGRATED - poorly inter-		<i>Y</i> /	/		
	Valeu	r du RMR	100 ← 81	80 ← 61	60 ← 41	40 ← 21	< 21		locked, heavily broken rock mass	1/ /	/	V /	1/	1//
	(Classe	1	II	Ш	IV	v		with mixture of angular and	Y /	/ /	1 /	/ 20	1/ /
	Des	cription	Très bon recher	Bon rocher	Rocher moyen	Rocher médiocre	Rocher très médi	iocre	rounded rock pieces	/	V /	/	Λ /	V /
D.	PRORI	ETES GLOBA	LES ATTRIBUEE	S AU MASSIF ROCI	HEUX EN FONCTION DES	CLASSES			PASSAU		1_/	/_/	1/_	<u> </u>
	(lasse	I	II	III	IV	V		*			r /	1/ /	1 40 /
		le tenue sans	20 ans pour une	l an pour une portée de	1 semaine pour une portée de 5 m		30 mn pour une porté	e de 1 m	LAMINATED/SHEARED - Lack			/	<i>Y</i> /	10 /
		ènement	portée de 15 m	10 m		2,5 m			of blockiness due to close spacing	N/A	N/A	/	Λ /	/ /
		n massif rocheux (kPa)	>400 kPa	300 à 400 kPa	200 à 300 kPa	100 à 200 kPa	< 100 kPa		of weak schistosity or shear planes			/ /		<i>X</i> /
An		ttement du massif	>45°	35° à 45°	25° à 35°	15° à 25°	<15°					. ,	. ,	. ,

Paramètres de cisaillement du massif :


Paramètres de Hoek & Brown (m_h, s, a) pour le calcul de la contrainte ultime du rocher

$$m_b = m_i \cdot e^{(\frac{100 \cdot GSI}{28})}$$

$$s = e^{(\frac{100 \cdot GSI}{9})}$$

$$a = \frac{1}{2} + \frac{1}{6} \left(e^{-\frac{GSI}{15}} - e^{-20/3} \right)$$

- Paramètres de cisaillement c' et φ' (linéarisation du critère de Hoek & Brown)
- En pratique, utilisation du logiciel ROCLAB, de Rocscience

Paramètres de cisaillement du massif (résultats) :

		MASSIF M2	MASSIF M3	MASSIF M4	MASSIF M5
		M- / Ms	M-	M-	M
Stratigraphie	Stratigraphie Profondeur (m/TN)		0 à 19	0 à 13	3,2 à 9,5
	m _b	[0,688 - 1,308]	[0,793 - 1,804]	[0,949 - 2,157]	0,618
Critère Hoek & Brown	S	[0,0003 - 0,0023]	[0,0005 - 0,0067]	[0,0009 - 0,0117]	0,0002
	а	[0,508 - 0,526]	[0,504 - 0,520]	[0,503 - 0,514]	0,531
Cisaillement massif homogénéisé	c'	[100 - 140] kPa	[140 - 190] kPa	[70 - 100] kPa	[50 - 80] kPa
Cisalilement massii nomogeneise	φ'	[43 - 48] °	[47 - 51] °	[37 - 43] °	[35 - 40] °
		MASSIF M6	MASSIF M7	MASSIF M8	MASSIF M9
		M	G0f/G0r	G0r	G0r
Stratigraphie	Profondeur (m/TN)	0 à 23	0 à 5,3	0 à 20	2,2 à 11,5
	m _b	[0,852 - 1,870]	[2,028 - 3,591]	[2,512 - 4,952]	[2,257 - 4,611]
Critère Hoek & Brown	S	[0,0007 - 0,0075]	[0,0005 - 0,0031]	[0,001 - 0,0084]	[0,0007 - 0,0067]
	а	[0,504 - 0,517]	[0,507 - 0,520]	[0,504 - 0,513]	[0,504 - 0,516]
Cisaillement massif hemogánáisá	c'	[90 - 130] kPa	[80 - 130] kPa	[90 - 140] kPa	[70 - 100] kPa
Cisaillement massif homogénéisé	φ'	[41 - 46] °	[44 - 49] °	[47 - 52] °	[47 - 53] °

Les paramètres finalement retenus sont les c', φ' moyens.

 $(65 \text{ kPa}; 37,5^{\circ}) (M5) < (c'; \varphi') < (115 \text{ kPa}; 49,5^{\circ}) (M8)$

Déformabilité du massif rocheux : différentes formulations

• Cording et al. (1971): E = f(RMR) RMR > 50

• Cording et al. (1971): E = f(RQD)(si RQD > 60)

• Fujita (1977) : $E = f(\ln(Q))$ (si Q > 1)

• Serafim et Pereira (1983) : E = f(RMR) (si 25 < RMR < 85)

• Bieniawski (1989) : $E = f(E_i, RQD)$

• Grimstad et Barton (1980) : E = f(RMR)

• Hoek & Brown (1997) : E = f(Rc, GSI)

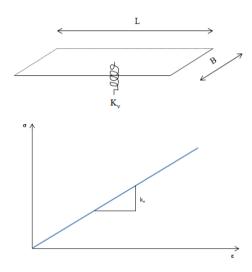
• Hoek (ROCLAB) : $E = f(E_i, GSI)$

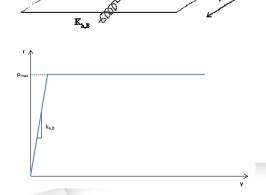
Module retenu = Moyenne des modules calculés en écartant les valeurs « aberrantes » (en gris)

_		G0f/G0r				
Auteurs		E _{mas} (MPa)				
Cording et al (1971)						
Cording et al (1971)						
Fujita (1977)						
Corofin at Daraira (1002)	RMR = 37	4732				
Serafim et Pereira (1983)	RMR = 53	11885	5			
	E _i = 1,5 GPa	0				
Bieniawski (1989)	E _i = 2,6 GPa	0				
	E _i = 3,7 GPa	0				
Crimetad & Barton (1000)	RMR = 37	19640				
Grimstad & Barton (1980)	RMR = 53	29300				
	GSI = 32	785				
Hoek & Brown (1997)	GSI = 40	1245				
	GSI = 48	1973				
		GSI = 32	139			
	Ei = 1,5 GPa	GSI = 40	239			
		GSI = 48	407			
		GSI = 32	241			
Hoek (ROCLAB)	Ei = 2,6 GPa	GSI = 40	415			
		GSI = 48	706			
		GSI = 32	343			
	Ei = 3,7 GPa	GSI = 40	591			
		GSI = 48	1004			

Modules de déformation calculés au droit de M7

Déformabilité du massif rocheux : résultats


		MASSIF M2	MASSIF M3	MASSIF M4	MA	SSIF M5
		M-/Ms	M-	M-	Rb	M
Stratigraphie	Profondeur (m/TN)	0 à 7	0 à 19	0 à 13	0 à 3,2	3,2 à 9,5
Déformabilité massif	E _{mas}	[900 - 4000] MPa	[1100 - 6000] MPa	[500 - 2000] MPa	-	[120 - 700] MPa
Deformabilité massii	E _{mas, retenu}	2000 MPa	3 000 MPa	1 100 MPa	112,5 MPa	350 MPa
		MASSIF M6	MASSIF M7	MASSIF M8	MA	SSIF M9
		M	G0f/G0r	G0r	G0f	G0r
Stratigraphie	Profondeur (m/TN)	0 à 23	0 à 5,3	0 à 20	0 à 2,2	2,2 à 11,5
Déformabilité massif	E _{mas}	[200 - 4000] MPa	[140 - 2000] MPa	[120 - 2000] MPa	-	[500 - 2000] MPa
Delomabilite massii	E _{mas, retenu}	1 500 MPa	700 MPa	800 MPa	20 MPa	1 100 MPa



CALCUL DES REACTIONS SOL/MASSIF

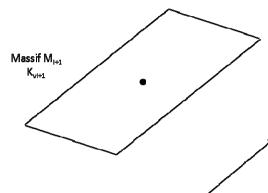
Massif M6		Hypothèses
Pente	$k_{h;B}$ (MN / m)	
Calculé par le rapport contrainte apportée sur tassement	9973	L = 7,0 m B = 4,6 m
Calculé selon la NF P 94-261	11084	E = 1500 MPa
Calculé selon FEMA 356	11084	$R_c = 7.9 \text{ MPa}$ s = 0.0041
Calculé selon SIEFFERT	11167	m = 1,361 v = 0,3
Valeur moyenne	10827	V = 0,3
Valeur retenue	10800	C - 1.059
Palier	$P_{max}(kN)$	$C_{BL} = 1,058$ $C_{f} = 1,182$
Contrainte ultime de l'assise	3,42	$C_{d} = 1,162$ $C_{d} = 1,157$
Valeur retenue	3,42	

Massif M6	Valeur	Hypothèses
Pente	$k_{h;B}$ (MN / m)	
Calculé selon la NF P 94-261	8846	L = 7,0 m B = 4,6 m
Calculé selon FEMA 356	8846	E = 1500 MPa
Calculé selon SIEFFERT	9040	$R_c = 7.9 \text{ MPa}$
Valeur moyenne	8911	s = 0,0041
Valeur retenue	8900	m = 1,361
Palier	$P_{max}(kN)$	v = 0,3
Effort maximal admissible	0,79 V _d + 73,33 A'	C _{BL} = 1,040
Valeur retenue	$0,79 V_d + 73,33 A'$	

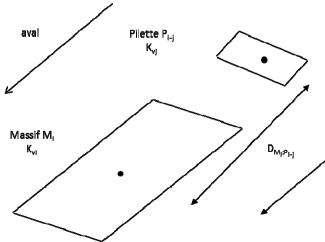
CALCUL DES REACTIONS SOL/MASSIF

Tableau de synthèse des réactions (massifs M2, M3 et M4) :

				Massif M	12			Massif N	<i>I</i> /3			Massif N	14	
	Caractéristiques	B =		5m				4,7m				4,9m		
	géométriques	L=		12,5m				8m				17m		
	Réaction verticale Kv	pente k _v =		20700 MN				23500 MN	N/m		13600 MN/m			
Réactions en sous-face	Contrainte ultime pour vérification capacité portante	q'u =		2020 kP	а			7410 kF	Pa		1910 kPa			
nos u	Frottement	pente k _{h;B} =		16700 MN				19200 MN				10800 MN		
ω	horizontal			0,85. Vd + 80),00.A'			0,96. Vd + 1	I10.A'		(0,70. Vd + 50	3,67.A'	
ü	transversal	palier P _{max}	A'	: surface cor	nprimée		A'	: surface co	mprimée		A'	: surface co	mprimée	
\éacti	transversar	(kN)=	Vd : compos	sante verticale	e de la DI	OC en kN	Vd : composante verticale de la DDC en kN				Vd : compo	osante vertic kN	ale de la	DDC en
ш.		pente k _{h;L} =		18100 MN	l/m			20300 MN	√m			12000 MN	√m	
	Frottement			0,85. Vd + 80),00.A'			0,96. Vd + 1	I10.A'		(0,70. Vd + 50	6,67.A'	
	horizontal	palier P _{max}	A'	: surface cor	nprimée		A'	: surface co	mprimée		A'	: surface co	mprimée	
	longitudinal	(kNI) -	Vd : compos	sante verticale	e de la DI	DC en kN	Vd : compo	osante vertic kN	ale de la	DDC en	Vd : compo	osante vertic kN	ale de la	DDC en
			Réactions latérales côté CF1	Réactions latérales côté montagne	Réactio ns latérales aval	Réactio ns latérales amont	Réactions latérales côté CF1	Réactions latérales côté montagne	Réactio ns latérales aval	Réactio ns latérales amont	Réactions latérales côté CF1	Réactions latérales côté montagne	<u>ns</u>	Réactio ns latérales amont
	O	B =	5m	5m	5m	5m	4,7m	4,7m	4,7m	4,7m	4,9m	4,9m	4,9m	4,9m
	Caractéristiques	L =	13,15m	11,8m	12,5m	12,5m	8m	8m	8m	8m	17m	17m	17m	17m
	géométriques	D =	4,2m	4,0m	3,0m	3,6m	0,3m	2,1m	0m	2,3m	3,3m	2,8m	1,8m	4,2m
		pente 1 :	,		1200	1200	1120	1120		1910			670	670
es			450 MPa/m	500 MPa/m			MPa/m	MPa/m	-	MPa/m	190 MPa/m	190 MPa/m	MPa/m	MPa/m
Réactions latérales	Fratta na anti-rantia al	palier 1 : q _s / 2 =	160 kPa	160 kPa	160 kPa	215 kPa	180 kPa	180 kPa	-	240 kPa	80 kPa	80 kPa	80 kPa	110 kPa
tions I	Frottement vertical	pente 2 : k _{s,e} / 5 =	90 MPa/m	100 MPa/m	240 MPa/m	240 MPa/m	224 MPa/m	224 MPa/m	-	382 MPa/m	38 MPa/m	38 MPa/m	134 MPa/m	134 MPa/m
Réac		palier 2 : q _s =	320 kPa	320 kPa		430 kPa		360 kPa	-	480 kPa		160 kPa		220 kPa
	Péaction frontale	pente $k_{f;B} =$	2680 MPa/m	2320 MPa/m	500 MPa/m	500 MPa/m	2770 MPa/m	2770 MPa/m	-	1040 MPa/m	1620 MPa/m	1620 MPa/m	230 MPa/m	230 MPa/m
	Réaction frontale	palier p _{max}			1150	1630				2050				1120
		=	1280 kPa	1260 kPa	kPa	kPa	1280 kPa	1510 kPa	-	kPa	770 kPa	730 kPa	650 kPa	
	Frottements	pente k _{h;L} =	2680 MPa/m	2320 MPa/m	500 MPa/m	500 MPa/m	2770 MPa/m	2770 MPa/m	-	1040 MPa/m	1620 MPa/m	1620 MPa/m	230 MPa/m	230 MPa/m
	horizontaux	palier p _{max} =	320 kPa	320 kPa	320 kPa	430 kPa	360 kPa	360 kPa	-	480 kPa	160 kPa	160 kPa	160 kPa	220 kPa


REACTIONS SOL/PILETTE ET SOL/SARCOPHAGE

Sarcophage: ressorts en sous-face uniquement


- Modèle de sol : identique à M2
- Dimensions du « massif » : B = 4,5m ; L = 97m

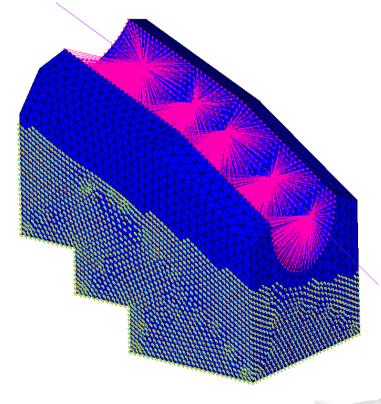
Pilettes (appuis entre massifs) : réaction verticales en sous-face uniquement

- Géométrie retenue : géométrie moyenne : B = 0,9m ; L = 3,4m
- Réactions calculées au droit des massifs, sans encastrement, puis interpolation en fonction des distances pilettes / massifs.

 $\mathsf{D}_{\mathsf{M}_{|};\mathsf{M}_{|+1}}$

$$K_{vj} = \frac{K_{vi+1} - K_{vi}}{D_{Mi;Mi+1}} \cdot D_{Mi;Pi-j} + K_{vi}$$

REACTIONS SOL/PILETTE ET SOL/SARCOPHAGE


Sarcophage et pilettes : résultats

			Sarcophage	Massif M2	Massif M3	Massif M4	Massif M5	Massif M6	Massif M7	Massif M8	Massif M9	
	Caractéristiques	B =	4,5m	0,9m								
	géométriques	L =	97,2m									
		E _{assise} =	2000 MPa	2000 MPa	3000 MPa	1100 MPa	112,5 MPa	1500 MPa	700 MPa	800 MPa	20 MPa	
		v =	v = 0,3									
		Rc _{assise} =	15 MPa	15 MPa	18,5 MPa	4 MPa	-	7,9 MPa	4,9 MPa	5,2 MPa	-	
	Hypothèses	c' =	120 kPa	120 kPa	165 kPa	85 kPa	-	110 kPa	105 kPa	115 kPa	-	
		φ' =	45,5°	45,5°	49°	40°	-	43,5°	46,5°	49,5°	-	
(se		m _b =	0,493	0,493	1,2985	1,553	-	1,361	2,8095	3,732	-	
ilett		s =	0,0004	0,0004	0,0036	0,0063	-	0,0041	0,0018	0,0047	-	
=	Réaction verticale K _{vi}	pente k _v =	92100 MN/m	4800 MN/m	7200 MN/m	2600 MN/m	270 MN/m	3600 MN/m	1700 MN/m	1900 MN/m	40 MN/m	
Réactions en sous-face (calcul pilettes)	Contrainte ultime pour vérification capacité portante	q'u =	1820 kPa	1960 kPa	6890 kPa	1890 kPa	2160 kPa	3120 kPa	2060 kPa	3250 kPa	1100 kPa	
-snc		pente k _{h;B} =	51000 MN/m									
s en sc	Frottement horizontal	palier P _{max} (kN)=	0,85. Vd + 80,00.A'									
action	transversal		A' : surface comprimée									
<u>α</u>			Vd : composante verticale de la DDC en kN									
		pente k _{h;L} =	63800 MN/m									
	Frottement horizontal longitudinal	palier P _{max} (kN) =	0,85. Vd + 80,00.A' A': surface comprimée Vd: composante verticale de la DDC									

- Interaction sol / massifs :
 - Ressorts non-linéaires avec caractéristiques définis ci-avant.
 - Altitude de la droite du terrain naturel (TN) pour chaque face verticale
 - pour chaque face verticale toute la hauteur de terrain (jusqu'au TN) participe aux interactions sol-massifs

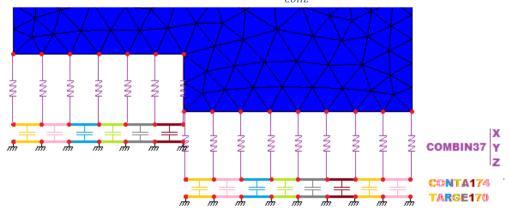
Première approche : Encastrement

Seconde approche : Ressorts de sol en sous-face et face amont

Pour chaque nœud situé sous le TN, trois ressorts sont créés : un agissant dans la direction normale à la face et deux tangentiels.

Principe de modélisation de l'ISS en sous-face de massif:

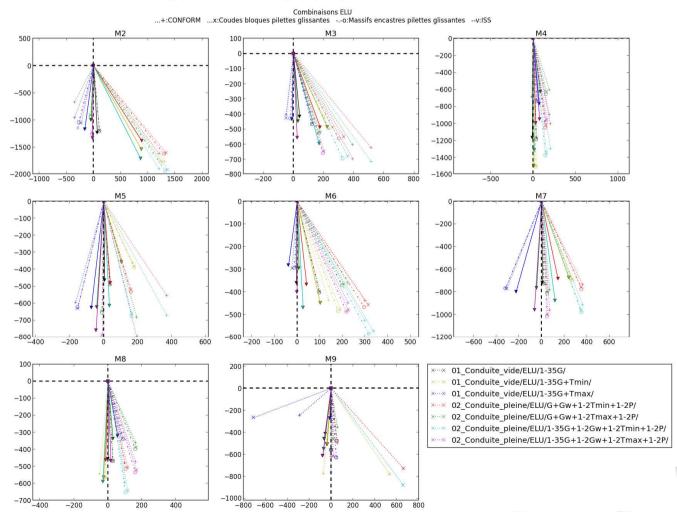
Objectif: Tenir compte du décollement, de la friction et d'une contrainte de cohésion:

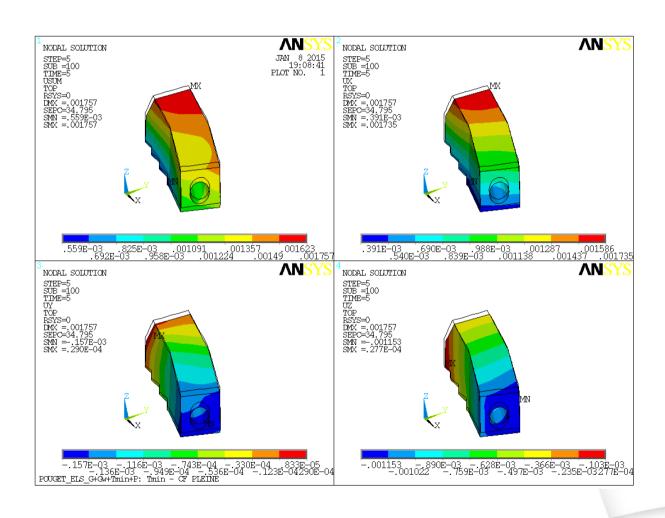

Mise en série de:

• 3 ressorts (1 normal et 2 tangentiels) par nœud, se désactivant si $\Delta Z > 0$.

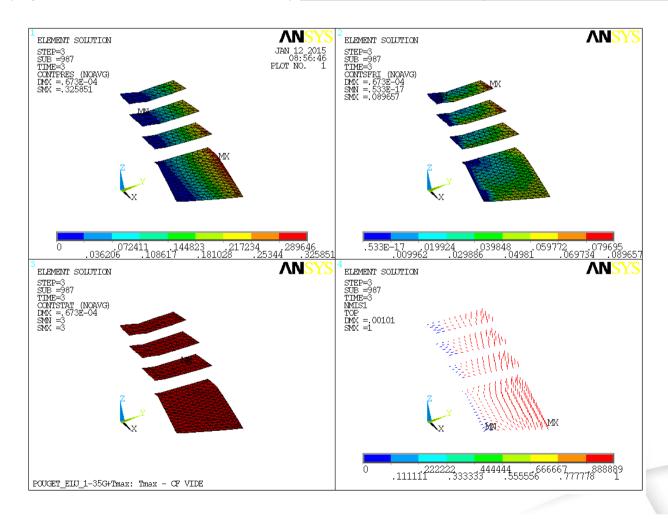
avec

• Des éléments de contact avec cible encastré, dont les paramètres permettent de modéliser la friction (avec le coefficient μ) et une contrainte de cohésion σ :


Glissement si
$$\tau_{max} > \mu \sigma_N + \sigma_{\sigma_{COHF}}^{COHF}$$


Résultantes ELU appliquées aux massifs après application des DDC :

Efforts appliques aux coudes en tonne-force [MN*100] dans le plan X-Z - AVEC LE POIDS PROPRE DES MASSIFS


Déformée de chaque massif pour chaque étape de chargement :

Vérification de l'état de la sous-face des massifs :

• Pour M2 (le plus décollé, du fait de son coude) : 76 % de surface comprimée à l'ELS, 82 % à l'ELU

Merci de votre attention