

Working with Pierre Foray to understand the behaviour of piles driven in sand

Pierre Foray Homage

27th January 2015

Richard Jardine

Background

Topic central for current large, multi € bn offshore windenergy and hydrocarbon projects

Difficult, considered fully resistant to 'theoretical refinement' by Terzaghi & Peck

Conventional API & other approaches have poor reliability

Advances made in 25 years of Anglo-French research, last decade working with Pierre Foray and Grenoble 3S-R Lab

Continuing collaboration with France: SOLCYP, TC-209, Grenoble 3S-R and current PISA tests

Programme started in 1990 with Labenne field experiments with Prof Roger Frank's LCPC team

102mm diameter; up to 20m long

SSTs measure local σ_r and τ on shaft

Intensive testing in sand at Labenne and Dunkerque 1990-95

...and 4 UK clay sites 1985-96

Bond, Jardine & Dalton (1991)

Page 3

Interrogating nature...

- Do conventional theories work? Constant K earth pressures and $\rm N_q$ models? Or direct in-situ test methods?
- If not, what really controls failure shaft shear τ and normal σ'_{rf} stresses & end-bearing $q_b?$
- What are the missing key variables?
- Are there really upper limits to τ and q_b ?
- Compression versus tension loading?

ICP Configuration

Multiple tests: Loose dune sand: Labenne Dense marine sand: Dunkerque

Continuous profiles of shaft radial and shear stresses, axial loads and tip resistance

Installation, equalisation and loading to failure

Tip pressures controlled by local q_c; shaft stresses also vary with pile tip position h

Shaft stresses vary strongly during loading

Labenne: end bearing

Pile end resistance q_b mirrors CPT q_c

Local shaft radial effective stresses

Shaft σ'_r during penetration at Labenne

Mirror q_c profile & vary with pile tip depth h

No constant K, but

 $\sigma'_r = f(q_c, \sigma'_{vo}, h/R)$

Confirmed in dense Dunkerque sand

Loading response & effective stress paths, similar at Dunkerque and Labenne

Basis for new ICP design rules used for oil, gas & wind energy

Piled tripods for Borkum West II German N. Sea Merritt et al 2012

Practical impact: one large UK jacket based windfarm

Critical economies in onshore and offshore projects

But surprising ageing results from large scale Dunkerque tests:

1994 Re-tests on CLAROM piles: Chow, Jardine, Brucy & Nauroy Geotechnique 1997

1998-9 tests on fresh GOPAL piles And cyclic tests on GOPAL Piles

Dunkerque tests in dense marine sands: 1988-2015

CLAROM, ICP, GOPAL, SOLCYP and current PISA tests

Variable q_c profile, up to 30 MPa

GOPAL: 8 steel pipe piles 457mm OD, 19m

Static & cyclic loading

Pile ages: 9 days to 1 year after driving

Jardine et al 2006, Jardine & Standing 2012

Ageing, creep & non-linear axial shaft stiffness,

1st tension tests varying with age

Impact of axial cyclic loading

Failure depends on N, Q_{cyclic}, Q_{mean} & static tension capacity Q_T

Loads normalised $Q_{cyclic}/Q_T \& Q_{mean}/Q_T$ to allow for age & pre-testing

Impact of axial cyclic loading: can halve capacity

Degradation much worse with bored piles: SOLCYP, Puech et al 2013

Need for scientific exploration of these 'new' phenomena

Working with Professor Pierre Foray 2005-2014

Model experiments with Prof. Pierre Foray

3S-R chamber, temperature & pressure control Dense NE34 sand; CPT: $20 < q_c < 25$ MPa Tests over months under 150 kPa Up to 36 stress sensors Instrumented Mini-ICP Foray, Tsuha, Silva M, Jardine & Yang Z.X. (2010) - ICPMG, Zurich

Mini-ICP model pile

Stainless steel: 36mm OD

Cyclic jacking installation

Local measurements at three h/R levels of:

- Axial load
- Surface $\tau_{rz} \& \sigma_r$
- Plus tip loads etc

Jardine, Zhu, Foray & Dalton (2009) Soils & Foundations

"Hands-on" with Pierre Foray in the 3S-R laboratory

"Heads-down" – problem solving...

Working even with a geo-endoscope_

Many successful tests over 2007-2013 main programme

International team: Academics, Post-Doc, PhD, MSc & technicians

Members from:

Brazil Chile China France Italy Tanzania United Kingdom

What did we find?

Distributions of $\sigma'_r \sigma'_z \& \sigma_{\theta}$ around piles

Key to modelling ageing, cyclic response, group effects..

Supported by IC-Grenoble laboratory element & particle scale studies

Installation σ'_r trends in sand mass:

1000s data contoured

$$\sigma_r/q_c = f(h/R, r/R, \sigma_{zo})$$

Intense tip concentration Unloading above tip

Sharp changes over each jacking cycle

Corresponding $\sigma_z \& \sigma_{\theta}$ trends

Jardine, Zhu, Foray & Yang 2013

Geotechnique

End of push

End of pause

Radial profiles of σ'_r/q_c and σ'_{θ}/q_c shortly after installation

Radial stresses measured on pile face – far below installation maxima

 σ_r and σ_{θ} profiles interlinked, peaks in at 2 < r/R < 4

Critical to shaft capacity ageing theories

Compared later to advanced analysis

Local stress paths at Leading pile instrument

One cycle towards end of installation

Interface Shear Zone; Yang, Jardine, Zhu, Foray & Tsuha 2010; Geotechnique

above during excavation

Micro analysis of progressive grain crushing

(a) Fresh

(b) Zone 1

(c) Zone 2

(d) Zone 3

Qic-Pic laser analyses of small samples:

Progression from fresh sand to Zone 1 'crust'

Breakage most severe in Zone 1, less in Zones 2 & 3

Related laboratory tests at Imperial College

Matching pile conditions in lab tests

Oedometer, interface ring-shear, high-to-low pressure stress path & cyclic experiments

High pressure oedometer compared to Zone 1

Void ratios, limits & sand states

Replicating shear zones: 'Bishop' ring-shear interface tests

Coarse example of sands sheared against steel for metres σ'_n up to 800 kPa; Ho et al 2011

Wide range of sands: different trends to direct shear interface tests

AIR SUPPLY 700kPa

High-to-Low Pressure Triaxial tests

High-to-Low pressures, without dismantling & changing soil fabric

Matching model pile installation stress paths

Altuhafi & Jardine 2011

High-to-Low pressure stress-path tests

K₀ compression: tip advancing from above

Active shearing: tip arrival with $\sigma'_v > 20MPa$

Unloading, tip advancing to greater depth

Re-shearing, in compression or extension at high 'OCR'

Effects on angle of shearing resistance?

High pressure 1st shearing:

Ductile response low peak ϕ^\prime

Low pressure re-shear:

Brittle and much higher peak ϕ' Critical to pile test interpretation

Ongoing research

Ageing studies in lab and field Rimoy, Silva, Jardine, Foray, Yang, Zhu & Tsuha (2015) Under Review, Geotechnique

Simulating crushing and pile installation stresses **`ALE' Finite Element method with breakage mechanics:** Zhang, Yang, Nguyen, Jardine & Einav (2014) Geotechnique Letters

End bearing and breakage: Zhang et al's predictions

Predicted and measured pile tip stresses q_c

Contours of breakage parameter B: Fresh sand B = 0, fully fractured B = 1

σ'_r/q_c and σ'_{θ}/q_c profiles predicted during installation

Encouraging agreement with cyclic penetration model pile tests

But predictions steady at h/R > 10, while shaft σ_r/q_c measurements keep falling with h/R

Improve by modelling shaft abrasion & cyclic penetration?

Second main theme in 3S-R experiments

Cyclic axial loading

Model pile lab tests: similar overall trends to Dunkerque field experiments, new insights

Parallel cyclic lab element testing

Integration into practical design

Stable Mini-ICP cycling: interface stress paths

Load-controlled to N > 1000 Stresses remain within Y_2 shaft capacity rises

Tsuha, Foray, Jardine, Yang, Silva & Rimoy (2012) Soils & Foundations

Unstable stress paths Mini ICP tests failing with N < 100

Displacement-controlled Two-Way tests engage Y_3 and Y_4 Phase transformation at interface

> Load-controlled One-Way tests engage Y₂ Drift towards interface failure

Shaft capacity falls markedly

Matching cyclic conditions in lab element tests

Interface $\delta \sigma'_r / \delta r = 2G/R$ Constant Normal Stiffness? $G \neq \text{constant}, R = \text{variable}$

Apply undrained CNS = ∞ in Cyclic Triaxial CTX

Or Simple Shear CSS tests Best performed in HCA

Pre-cycling stress path?

Undrained cyclic element tests: NE34 & Dunkerque sands

Yielding patterns and p' drift rates depend on:

 $CSR = q_{cyclic}/p'$ and N

Shearing mode (TXL or HCA-SS)

OCR & pre-cycling; creep & ageing periods

SOLCYP and applications

SOLCYP: Puech et al 2013

SUT 2012, Paris 2013 workshop

Jardine, Puech & Anderson 2012 Anderson, Puech & Jardine 2013

ICP static and cyclic methods for Borkum West II; Merritt et al 2012

Image from www.heavyliftspecialist.com

Summary

- Challenges posed by field behaviour. New scientific insights needed into ageing & cyclic response
- Critical investigations with Pierre Foray into pile installation stresses, grain-crushing, interface-shear & cyclic behaviour
- Intensively instrumented laboratory model experiments integrated with field, soil element & analytical research
- Results applied in major projects
- Still problems to solve:
 - Effect of scale on driven pile ageing?
 - More field tests needed: at Dunkerque, Larvik or Blessington?
 - Lateral/moment loading new PISA programme underway: monopiles, tripods, jackets etc

Professor Pierre Foray 1949-2014

Other acknowledgments

Sponsors & partners: BP, BRE, CNRS, IFP, EPSRC, Exxon, INPG 3S-R, HSE, Shell, SOLCYP, Total and others

Current and former coworkers: Steve Ackerley, Fatin Altuhafi, Francoise Brucy, Andrew Bond, Fiona Chow, Roger Frank, Itai Einav, Tony Ho, Reiko Kuwano, Barry Lehane, Alain Puech, Siya Rimoy, Matias Silva, Cristina Tsuha, Jamie Standing, Zhongxuan Yang, Bitang Zhu and many others