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Background

Topic central for current large, multi € bn offshore wind-
energy and hydrocarbon projects

Difficult, considered fully resistant to ‘theoretical 
refinement’ by Terzaghi & Peck

Conventional API & other approaches have poor reliability

Advances made in 25 years of Anglo-French research, last 
decade working with Pierre Foray and Grenoble 3S-R Lab

Continuing collaboration with France: SOLCYP, TC-209, 
Grenoble 3S-R and current PISA tests

Programme started in 1990 with Labenne field 
experiments with Prof Roger Frank’s LCPC team
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axial load cell

leading
instrument 
cluster, h/R=8

following
instrument 
cluster, h/R=27

trailing
instrument 
cluster, h/R=50

lagging
instrument 
cluster, h/R=72IC instrumented piles

102mm diameter; up 
to 20m long

SSTs measure local σr
and τ on shaft

Intensive testing in 
sand at Labenne and 
Dunkerque 1990-95

…and 4 UK clay sites 
1985-96

Bond, Jardine & Dalton (1991)



The 4 + 2 Anglo-French team at Labenne, SW France, 1990
See Lehane, Jardine, Bond & Frank (1993), ASCE
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Interrogating nature…

Do conventional theories work? Constant K earth 
pressures and Nq models? Or direct in-situ test 
methods?

If not, what really controls failure shaft shear τ and 
normal σ΄rf stresses & end-bearing qb?

What are the missing key variables?

Are there really upper limits to τ and qb?

Compression versus tension loading?



ICP Configuration  Multiple tests:
Loose dune sand: Labenne 
Dense marine sand: 

Dunkerque

Continuous profiles of shaft 
radial and shear stresses, 
axial loads and tip 
resistance

Installation, equalisation and 
loading to failure

Tip pressures controlled by  
local qc; shaft stresses 
also vary with pile tip 
position h

Shaft stresses vary strongly 
during loading



Labenne: end bearing 
Pile end resistance qb mirrors CPT qc



Local shaft radial 
effective stresses 

Shaft σ′r during 
penetration at Labenne 

Mirror qc profile & vary 
with pile tip depth h

No constant K, but 

σ′r = f (qc, σ′vo, h/R)

Confirmed in dense 
Dunkerque sand

Effect of h/R



Loading response & effective stress paths, similar 
at Dunkerque and Labenne

σ΄r varies under load

Tension ≠ compression

Simple interface law
Δσ΄rd = 2G δr/R 

Dr influence is through G

δcv not affected by Dr

Tests on CLAROM piles
explore open-end effects
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Basis for new ICP design rules used for oil, gas & wind energy 
use

Piled tripods for Borkum West II
German N. Sea Merritt et al 2012

Overy 2007
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Practical impact: one large
UK jacket based windfarm
Critical economies in onshore and 
offshore projects

But surprising ageing results from 
large scale Dunkerque tests: 

1994 Re-tests on CLAROM piles: 
Chow, Jardine, Brucy & Nauroy
Geotechnique 1997

1998-9 tests on fresh GOPAL piles

And cyclic tests on GOPAL Piles
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Variable qc profile, up 
to 30 MPa

GOPAL: 8 steel pipe 
piles 457mm OD, 19m

Static & cyclic loading 

Pile ages: 9 days to 1 
year after driving

Dunkerque tests in dense marine sands: 1988-2015

CLAROM, ICP, GOPAL, SOLCYP and current PISA tests

Jardine et al 2006, Jardine & Standing 2012



1st tension tests varying with age

Ageing, creep & non-linear axial shaft stiffness, 
235 days

81 days

9 days

Creep important 
at Q > 1MN



Impact of axial cyclic loading

Load controlled 
T = 60s

One-Way: tension 
Two-Way: tension 
& compression

Plus: tension tests 
to failure

Failure depends on N, Qcyclic, Qmean & static tension capacity QT

Loads normalised Qcyclic/QT & Qmean/QT to allow for age & pre-testing



Impact of axial cyclic loading: can halve capacity
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Shaft capacity grows 
Cycling adds to 
ageing

Jardine and Standing (2012)

Degradation much worse with bored piles: SOLCYP, Puech et al 2013



Working with Professor Pierre Foray
2005-2014

Need for scientific exploration
of these ‘new’ phenomena
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Model experiments with Prof. Pierre Foray

3S-R chamber, temperature & pressure control
Dense NE34 sand; CPT: 20< qc <25 MPa
Tests over months under 150 kPa
Up to 36 stress sensors
Instrumented Mini-ICP
Foray, Tsuha, Silva M, Jardine & Yang Z.X. (2010) - ICPMG, Zurich



Mini-ICP model pile

Stainless steel: 36mm OD

Cyclic jacking installation

Local measurements at 
three h/R levels of:

– Axial load

– Surface τrz & σr

– Plus tip loads etc h,
 h
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Jardine, Zhu, Foray & Dalton 
(2009) Soils & Foundations



“Hands-on” with Pierre Foray
in the 3S-R laboratory



“Heads-down” – problem 
solving…

Working even with a geo-endoscope



Many successful  tests over 2007-2013 main programme



Members from: 

Brazil
Chile
China
France
Italy

Tanzania
United Kingdom

International team:  
Academics, Post-Doc, PhD, MSc & technicians



Distributions of σ΄r σ΄z & σ θ around piles

Key to modelling ageing, cyclic response, 
group effects..

Supported by IC-Grenoble laboratory element 
& particle scale studies

What did we find?



Installation σ´r trends
in sand mass:

End of push End of pause
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σ r/qc = f(h/R, r/R, σ zo)

Intense tip concentration 
Unloading above tip

Sharp changes over each 
jacking cycle

Corresponding σ z & σ θ trends

Jardine, Zhu, Foray & Yang 2013 
Geotechnique



Radial profiles of σ´r /qc and σ´θ /qc shortly after installation

σ r and σ θ profiles interlinked, peaks in at 2 < r/R  < 4

Critical to shaft capacity ageing theories

Compared later to advanced analysis

Radial stresses measured on pile face – far below installation maxima



Local stress paths at Leading pile instrument 
One cycle towards end of installation 
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Interface shear zone;  Yang, Jardine, Zhu, Foray & 
Tsuha 2010; Geotechnique

Pile edge

Grey dense fractured shear zone ‘crust’
0.5-1.5mm thick, growing with h 
Not present if qc < 6 MPa

10 mm

36 mm

Side view of vertical
sample from shaft

Shaft view from
above during excavation
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Breakage Zones 1, 2 & 3

Breakage starts under tip  
σ′v > 20 MPa

Fractured sand displaced & 
spread over shaft: Zone 1

Further abrasion on shaft

Partial fracturing in outer 
Zones 2 & 3



Micro analysis of progressive grain crushing

(a) Fresh (b) Zone 1

(c) Zone 2 (d) Zone 3



Qic-Pic laser analyses of small samples: 
Progression from fresh sand to Zone 1 ‘crust’

Breakage most severe in Zone 1, less in Zones 2 & 3



Matching pile conditions in lab tests

Oedometer, interface ring-shear, 
high-to-low pressure stress path 

& cyclic experiments

Related laboratory tests at Imperial College



High pressure oedometer compared to Zone 1
Void ratios, limits & sand states

Fresh NE34
e = 0.63

Average Zone 1
e = 0.36

High pressure
oedometer

Yang et al (2010)



Wide range of sands: different trends to direct shear interface tests

Abrading steel
interface

Crushed sand

Intact sand

Replicating shear zones: ‘Bishop’ ring-shear interface tests

Coarse example of sands sheared against steel for metres 
σ′n up to 800 kPa; Ho et al 2011



High-to-Low Pressure Triaxial tests

High-to-Low pressures,
without dismantling & 
changing soil fabric

Matching model pile 
installation stress paths

Altuhafi & Jardine 2011



High-to-Low pressure stress-path tests
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Effects on angle of shearing resistance?

High pressure 1st shearing:
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Ductile response low peak φ′ 

Brittle and much higher peak φ′
Critical to pile test interpretation

Low pressure re-shear:



Ongoing research 

Ageing studies in lab and field
Rimoy, Silva, Jardine, Foray, Yang, Zhu & Tsuha (2015) 

Under Review, Geotechnique 

Simulating crushing and pile installation stresses
‘ALE’ Finite Element method with breakage mechanics: 

Zhang, Yang, Nguyen, Jardine & Einav (2014) 
Geotechnique Letters 



End bearing and breakage: Zhang et al’s predictions

Predicted and measured
pile tip stresses qc

Contours of breakage parameter B:
Fresh sand B = 0, fully fractured B = 1
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(a) Numerical results by Zhang et al. (2013)

Fontainebleau sand 

σ´r /qc and σ´θ /qc profiles predicted during installation

Encouraging agreement with cyclic penetration model pile tests

But predictions steady at h/R > 10, while shaft σ r/qc
measurements keep falling with h/R 

Improve by modelling shaft abrasion & cyclic penetration?

Maxima within 30%
of measurements



Cyclic axial loading

Model pile lab tests: similar overall trends to 
Dunkerque field experiments, new insights

Parallel cyclic lab element testing

Integration into practical design

Second main theme in 3S-R experiments



Stable Mini-ICP cycling: interface stress paths 
Load-controlled to N > 1000
Stresses remain within Y2 shaft capacity rises

Tsuha, Foray, Jardine, Yang, Silva & Rimoy (2012) Soils & Foundations



Unstable stress paths 
Mini ICP tests failing with N < 100

Displacement-controlled
Two-Way tests engage Y3 and Y 4
Phase transformation at interface

Load-controlled
One-Way tests engage Y2 

Drift towards interface failure

Shaft capacity falls markedly



Matching cyclic conditions in lab element tests 

Interface δσ′r/δr = 2G/R 
Constant Normal Stiffness?
G ≠ constant, R = variable
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Apply undrained CNS = ∞
in Cyclic Triaxial CTX 

Or Simple Shear CSS tests
Best performed in HCA

Pre-cycling stress path?



Yielding patterns and p′ drift rates depend on:    
CSR = qcyclic/p′ and N
Shearing mode (TXL or HCA-SS)
OCR & pre-cycling; creep & ageing periods

Undrained cyclic element tests: NE34 & Dunkerque sands



SOLCYP and applications
Jardine, Puech & Anderson 2012
Anderson, Puech & Jardine 2013

ICP static and cyclic methods for
Borkum West II; Merritt et al 2012

Image from www.heavyliftspecialist.com

SUT 2012, Paris 2013 workshop
SOLCYP: Puech et al 2013



Summary
• Challenges posed by field behaviour. New scientific insights 

needed into ageing & cyclic response

• Critical investigations with Pierre Foray into pile installation 
stresses, grain-crushing, interface-shear & cyclic behaviour

• Intensively instrumented laboratory model experiments 
integrated with field, soil element & analytical research

• Results applied in major projects 

• Still problems to solve: 
• Effect of scale on driven pile ageing? 
• More field tests needed: at Dunkerque, Larvik or 

Blessington?
• Lateral/moment loading – new PISA programme 

underway: monopiles, tripods, jackets etc
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