

Battage et vibro-fonçage Le cadre réglementaire français

Catherine Jacquard FONDASOL

26 mars 2014

Norme NF P 94 262 Juillet 2012

Norme d'application nationale de l'Eurocode 7 Fondations profondes

- Annexe A (Informative): pieux battus, vibrés ou vérinés
 - Classe 4
 - Cat. 9: battu préfabriqué ou précontraint (BPF/BPR)
 - Cat. 10: battu enrobé béton, mortier, coulis (BE)
 - Cat. 11: battu moulé (BM)
 - Cat. 12: battu acier fermé (BAF)
 - Classe 5
 - Cat. 13: battu acier ouvert (BA0)
 - Classe 6
 - Cat. 14: profilé H battu (HB)
 - Cat. 15: profilé H battu injecté (HBi)
 - Classe 7
 - Cat. 16: palplanches battues (PP)

Annexes F et G

- Normatives
- Annexe F: portance limite selon méthode pressiométrique
- Annexe G: portance limite selon méthode pénétrométrique

Portance

$$R_c = R_b + R_s$$

$$q_{b;k} = \frac{qb}{\gamma_{R;d1}\gamma_{R;d2}}$$

$$\mathbf{R}_{_{b;k}} = \mathbf{A}_{\!b.} \mathbf{q}_{\!b;\,k}$$

$$R_{c;k} = R_{b;k} + R_{s;k}$$

$$R_{c;d} = \frac{R_{c;k}}{\gamma_t} = \frac{R_{c;k}}{1,1}$$

$$R_t = R_S$$

$$q_{s;k} = \frac{qs}{\gamma_{R;d1}\gamma_{R;d2}}$$

$$R_{s;k} = P_s.l_s.q_{s;k}$$

Coefficients de modèle méthode pressiométrique

Procédure	Pieu mo Et Modèle o		Modèle de terrain		
	γR;d1 compression	γR;d1 traction	γR;d2 compression	γR;d2 traction	
Tous les pieux battus non ancrés dans la craie, sauf cat 10 et 15	1,15	1,4			
Tous les pieux battus ancrés dans la craie, sauf cat 10 et 15	1,4	1,7	1,1		
Cat. 10: battu enrobé Cat. 15: profilé H battu injecté	2,0	2,0			

Coefficients de modèle méthode pénétrométrique

Procédure	Pieu mo Et Modèle o		Modèle de terrain		
	γR;d1 compression	γR;d1 traction	γR;d2 compression	γR;d2 traction	
Tous les pieux battus non ancrés dans la craie, sauf cat 10 et 15	1,18	1,45			
Tous les pieux battus ancrés dans la craie, sauf cat 10 et 15	1,45	1,75	1,1		
Cat. 10: battu enrobé Cat. 15: profilé H battu injecté	2,0	2,0			

Aire Ab et périmètre Ps à prendre en compte

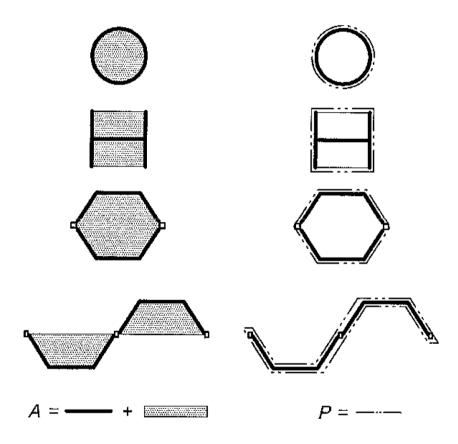


Figure A.10.1 — Aire A des sections transversales et périmètre P des pieux tubulaires, des pieux H, des caissons et des palplanches métalliques

Facteur de portance kpmax (De/B > 5) méthode pressiométrique

 $R_b = A_b k_p pl^*$

Pour les pieux BAO, HB, PP vibrés:

kp = 0.5 kp

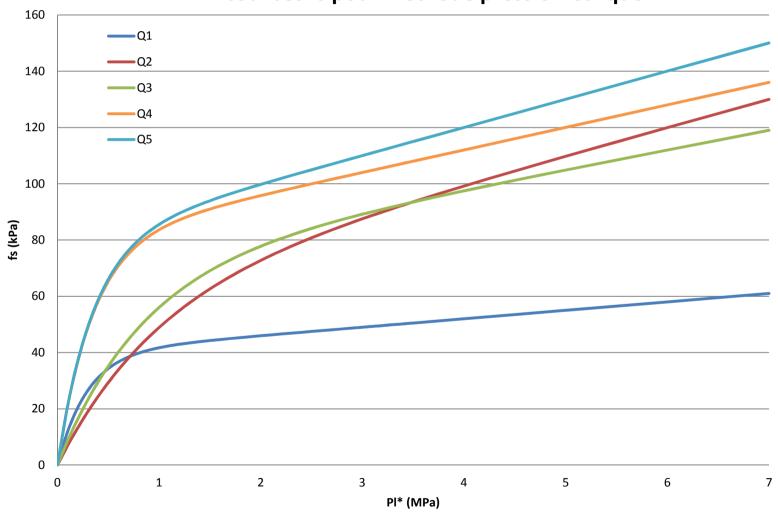
p	ple	Argile limon	Sable		Marne et	Roche altérée
	Classe	Sol interm.	grave Sol interm.	Craie	calcaire marn.	ou fragm.
	4	1,35	3,1	2,3	2,3	2,3
	5#	1,0/0,5	1,9/ <mark>0,95</mark>	1,4/0,7	1,4/ 0,7	1,2/ 0,6
	6#	1,2/0,6	3,10/1,55	1,7/0,85	2,2/1,1	1,5/0,75
	7#	1,0/0,5	1,0/0,5	1,0/0,5	1,0/0,5	1,2/0,6

Frottement latéral (pressiomètre)

$$R_s = P_s \int_0^D q_s(z) dz \qquad q_s(z) = \alpha_{pieu-sol} f_{sol}[p_l^*(z)]$$

Tableau F.5.2.1 — Choix des valeurs de α_{pieu-sol} — Méthode pressiométrique

Pour les pieux BAO, HB, PP vibrés:


 $q_s = 0.7 q_s$

N°	Abréviation	Technique de mise en œuvre	Argile % CaCO3 < 30% Limon Sols intermédiaires	Sols intermédiaires Sable Grave	Craie	Marne et Calcaire- Marneux	Roche altérée ou fragmentée
9	BPF**, BPR**	Battu béton préfabriqué ou précontraint	1,1	1,4	1	0,9	
10	BE**	Battu enrobé (béton – mortier – coulis)	2	2.1	1,9	1.6	_
11	BM**	Battu moulé	1,2	1,4	2,1	1	
12	BAF**	Battu acier fermé	0,8	1,2	0,4	0,9	
13	BAO** #	Battu acier ouvert	1,2	0,7	0,5	1	1
14	HB** #	H battu	1,1	1	0,4	1	0,9
15	HBi**	H battu injecte IGU ou IRS	2,7	2,9	2,4	2,4	2,4
16	PP** #	Palplanches battues	0,9	0,8	0,4	1,2	1,2

qsmax méthode pressiométrique

 $R_s = P_s \int_0^D q_s(z) dz$

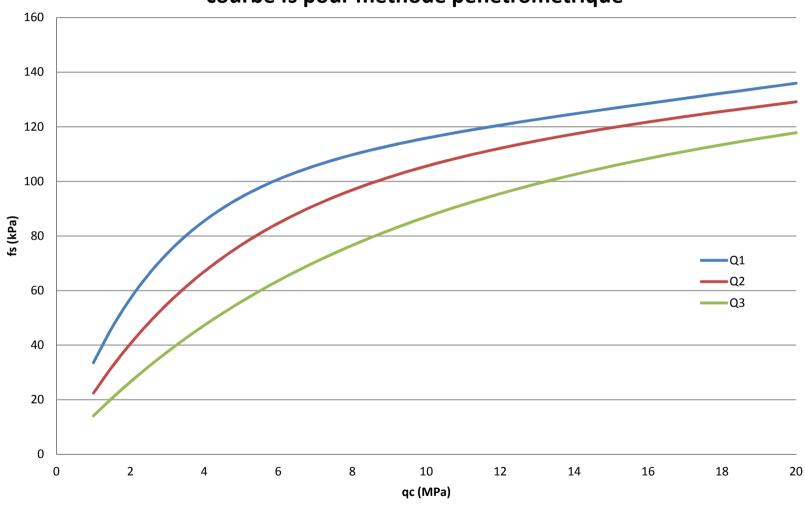
Pour les pieux BAO, HB, PP vibrés:

qs = 0.7 qs

	$q_s(z)dz$	Argile Limon	Sols interm.	Sable Grave	Craie	Marne Calcaire marn.	Roche altérée ou fragm.
	9 BPF/BPR	130	130	130	90	90	-
	10 BE	170	170	260	200	200	-
	11 BM	90	90	130	260	200	-
)	12 BAF	90	90	90	50	90	-
	13 BAO#	90/63	90/63	50/35	50/35	90/63	90/63
S	14HB#	90/63	90/63	130/91	50/35	90/63	90/63
	15 HBi	200	200	380	320	320	320
	16 PP#	90/63	90/63	50/35	50/35	90/63	90/63

Facteur de portance kc max (De/B > 5) méthode pénétrométrique

	Classe	Argile limon	Sols interm.	Sable grave	Craie	calcaire mar.	altérée ou fragm.
# Pour	4	0,45	0,40	0,40	0,40	0,40	0,40
les pieux BAO, HB, PP	5#	0,35/0,17 ⁵	0,30	0,25	0,15	0,15	0,15
vibrés:	6#	0,4/0,2	0,4/0,2	0,4/0,2	0,35/0,17 ⁵	0,20/0,10	0,20/0,10
kc= 0.5 kc	7#	0,35/0,17 ⁵	0,25/0,125	0,15/0,075	0,15/0,07 ⁵	0,15/0,075	0,15/0,075


qsmax -méthode pénétrométrique

$R_s = P_s \int_0^D$	$q_s(z)dz$	Argile Limon	Sols interm.	Sable grave	Craie	Marne et calcaire marn.	Roche altérée ou fragm.
	9 BPF/BPR	130	130	130	90	90	-
Pour les	10 BE	170	170	260	200	200	-
pieux	11 BM	90	90	130	260	200	-
BAO, HB, PP	12 BAF	90	90	90	50	90	-
vibrés:	13 BAO#	90/63	90/63	50/35	50/35	90/63	90/63
qs = 0.7 qs	14HB#	90/63	90/63	130/91	50/35	90/63	90/63
	15 HBi	200	200	380	320	320	320
	16 PP#	90/63	90/63	50/35	50/35	90/63	90/63

courbe fs pour méthode pénétrométrique

Mobilisation de la pointe kp et kc - BAF/BAO

	Classe	Argile limon	Sols interm.	Sable grave	Craie	Marne et calcaire marn.	Roche altérée ou fragm.
	4(BAF)	1,35		3,1	2,3	2,3	2,3
PRESSIO	5(BAO)	1,0		1,9	1,4	1,4	1,2
	BAF/BAO	1.35	1.35/1.63	1.63	1.64	1.64	1.92
	4(BAF)	0,45	0,4	0,4		0,4	
PENETRO	5(BAO)	0,35	0,3	0,25	0,15		
	BAF/BAO	1.29	1.33	1.60	2.67		
FASC. 62				2	2.0		

Mobilisation du frottement αpieu-sol- BAF/BAO

	Classe	Argile limon	Sols intermé diaires	Sable grave	Craie	Marne et calc. Marn.	Roche alt. ou fragm.		
	4(BAF)	0,8		1,2	0,4	0,9	-		
PRESSIO	5(BAO)	1,2		0,7	0,5	1,0	1,0		
	BAF/BAO	0.67	0.67/ 1.71	1.71	0.8	0.9	-		
	4(BAF)	0,4	0,5	0,85	0,2	0,85	-		
PENETRO	5(BAO)	0,6	0,7	0,5	0,25	0,95	0,95		
	BAF/BAO	0.67	0.71	1.7	0.8	0.89	-		
FASC. 62		1.0							

Ex BAO 600mm 10m sables $Pl^* = 1.5 MPa$

• EC7:

Rc = 1.632 MN; $Q_{ELU} = 1.173 \text{ MN}$; $Q_{ELS} = 1.003 \text{ MN}$

• Fasc. 62:

Qu= 2.199 MN; QELU= 1.571 MN; QELS= 1.399 MN

• DTU 13.2:

Qu= 3.045 MN; QELU= 1.592 MN; QELS= 1.061 MN