

Le Projet National VIBROFONÇAGE

Intervenant : Frédéric Rocher-Lacoste Date : 26 mars 2014

Axes de recherche

Adoption des trois axes de recherche dégagés à l'issue de l'enquête de l'IREX:

- prévision du vibrofonçage des profilés (pieux, palplanches...)
- prévision de la capacité portante des pieux vibrofoncés
- prévision des vibrations dans le sol générées par le vibrofonçage

Organisation du projet

Tout à fait classique, avec :

- un comité directeur,
- un comité technique,

le secrétariat et la gestion administrative et financière du projet étant assurés par l'IREX.

M. Pierre Monadier président du projet national

M. Henri Gonin directeur technique du projet et président du comité technique

Des groupes de travail sur certains sujets particuliers (établissement des cahiers des charges des essais, rédaction du guide technique...)

Les acteurs du projet

En dehors de la DRAST et de l'IREX, le nombre de partenaires, initialement limité à 13, est progressivement monté à 27 à la fin du projet.

Toutes les catégories d'organismes concernées par le vibrofonçage ont été représentées au sein du projet :

- maîtres d'ouvrage	6
- centres de recherche	5
- bureaux d'études	7
- entreprises	6
- fabricants de matériel	2
- aciéristes	1

Financement

Comparaison des prévisions et de la réalisation;

	Prévisions		Exécuti	Variations	
	€HT	%	€ HT	%	E/P
Subventions RGCU	185 988	20,0	245 658	21,3	+ 32,1 %
Cotisations	292 702	31,4	285 843	24,8	- 2,3 %
Apports en nature	452 733	48,6	622 624	53,9	+37,5 %
Total	931 463	100,0	1 154 125	100,0	+ 23,9 %

Compte tenu du nombre relativement faible des partenaires, leurs cotisations, initialement réparties sur quatre ans, ont dû être augmentées d'une demi-annuité pour atteindre sensiblement le montant initialement prévu.

Documents et synthèse

Les documents de synthèse consistent essentiellement dans le guide technique et le logiciel BRAXUUS diffusé avec lui.

Mais ils comportent également 23 rapports sur les différents travaux menés, dont la liste complète est donnée dans le guide technique.

Initialement fixé à trois ans, le calendrier du projet a en fait subi un dérapage important pour être en définitive porté à cinq ans.

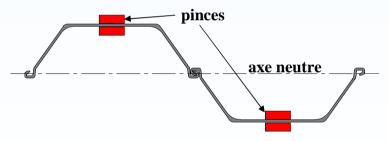
Un guide écrit en Français et traduit en Anglais

Environ 100 pages de guide et 160 pages d'annexes

Premier ouvrage consacré uniquement à ce sujet

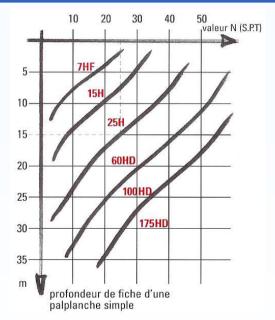
Chapitre 1- Généralités

Définition Rappels historiques

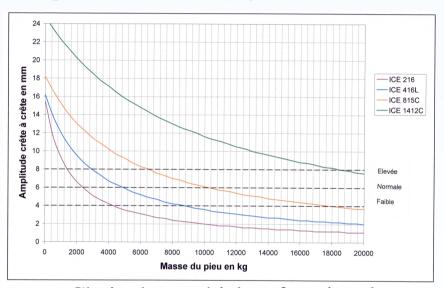


Vibrateur annulaire

Vibrateur sur pieu en béton préfabriqué

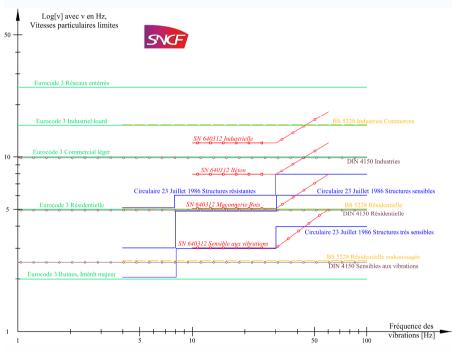

Chapitre 2 – Présentation des Matériels

Positionnement des pinces

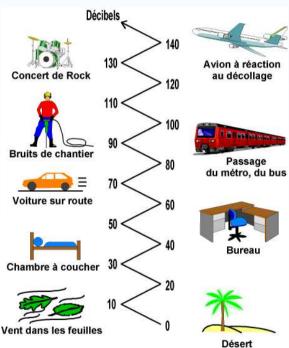


Choix du matériel à partir de l'expérience du constructeur

Chapitre 3 – Vibrofonçage et Choix du Matériel


Choix du matériel en fonction de l'amplitude du couple vibrateur- pieu

	Fréquence en tr/mn Indice prix basé su	
Fréquence standard à moment fixe	1 680	100
Fréquence standard à moment variable (HV)	1 680	130
Haute fréquence à moment fixe	2 300	140
Haute fréquence à moment variable (HFV)	2 300	160
Fréquence standard à moment variable (HV)	1 680	130
Haute fréquence à moment fixe	2 300	140


Chapitre 4 – Exécution des travaux, contrôle et instrumentation

Comparaison des seuils de différentes normes pour les vibrations continues

Echelle du bruit en dB (A)

Panneaux de contrôle des centrales hydrauliques

Chapitre 5 – Force Portante d'éléments vibrofoncés

		Battu			Vibrofonçé		
		charge	charge	charge	charge	charge	charge
		limite	reprise	reprise en	limite	reprise	reprise en
		Q_{u}	par	pointe	Q_{u}	par	pointe Q _p
			frottement	Q_p		frottement	
			latéral			latéral	
			Q_s			Q_{s}	
AU16	kN	1125	852	273	800	575	225
	%	100	76	24	100	72	28
AU 20	kN	2500	1830	670	1800	1284	516
	%	100	73	27	100	71	29
HP 400 x 213	kN	1000	774	226	600	465	135
	%	100	77	23	100	78	22
tube Ø 508	kN	1100	910	190	675	563	112
	%	100	83	17	100	83	17