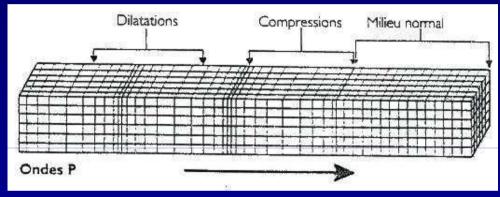


Mesure des vibrations induites dans l'environnement par le battage ou le vibrofonçage – critères d'acceptation

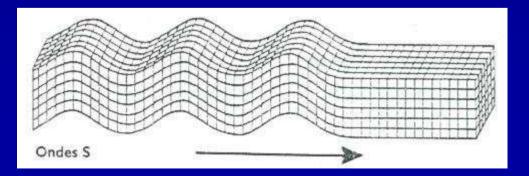
D. Durot

Rincent BTP Services Recherche Expertise

problématique:


- Propagation des ondes dans le sol
- Nature du risque: tassement du sol, incidence sur les structures environnantes ...
- Critères d'acceptation en France et à l'International
- Moyens de mesure pendant les travaux

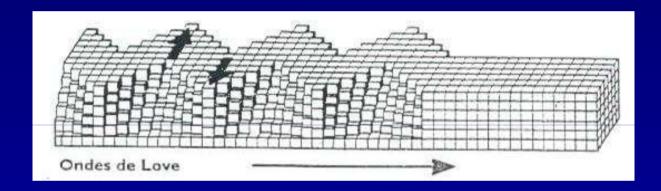
Propagation des ondes dans le sol: rappel



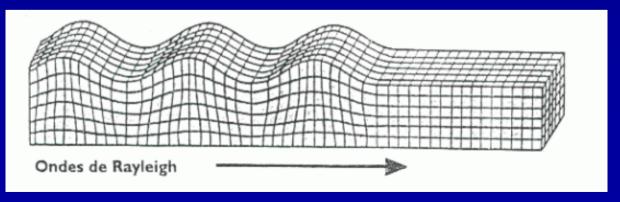
Ondes de volume :

 onde P (onde de compression) se propageant par compression et dilatation successives

 onde S (onde de cisaillement): à son passage, les mouvements du sol s'effectuent perpendiculairement au sens de propagation de l'onde (Vs < Vp)

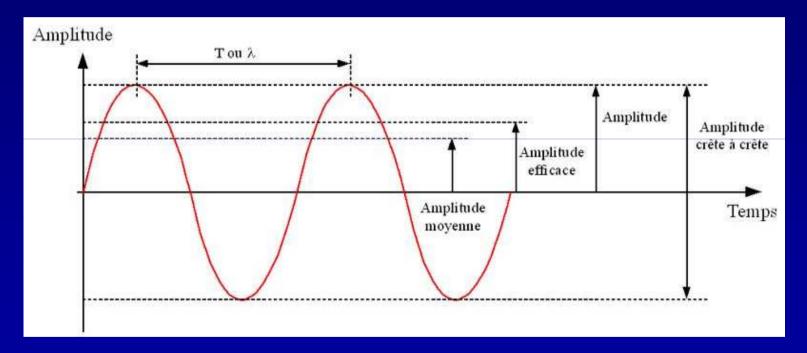


Propagation des ondes dans le sol: rappel



Ondes de surface:

 onde de Love se propageant de la même manière que les ondes S mais sans mouvement vertical


 onde de Rayleigh: déplacement complexe à la fois horizontal et vertical (elliptique)

De la propagation à la vitesse particulaire

En un point donné, la vitesse à laquelle vibre ce point au passage d'une onde constitue la vitesse particulaire en ce point:

Elle se mesure dans les 3 directions de l'espace (Vv: verticale, Vt: transversale, VI: longitudinale

Vitesse particulaire maximale

la notion de vitesse particulaire maximale est à considérer différemment:

- Valeur maximale 0-crête pour chaque direction de l'espace en fonction du temps
- Valeur résultante des trois valeurs maximales d'une manière indépendante du temps !!!!!!!:

$$V = \sqrt{V v_{max}^2 + V l_{max}^2 + V t_{max}^2}$$

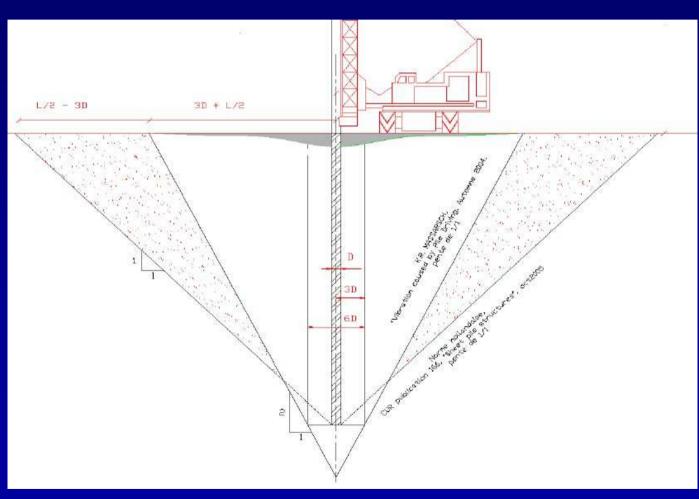
Nature des risques

- Dissipation de l'énergie dans des structures
- Fragilisation des édifices
- Tassements (possibilité d'estimation par la méthode de Massarsch (Suède) / norme Hollandaise (CUR 166):

$$S_{moyen} = \frac{1}{3} \cdot \alpha \cdot (L + 6 \cdot R)$$
 et $S_{max} = \alpha \cdot (L + 6 \cdot R)$

Avec:

L: Longueur de pieu (m)


R: Rayon du pieu (m)

α: facteur de compression

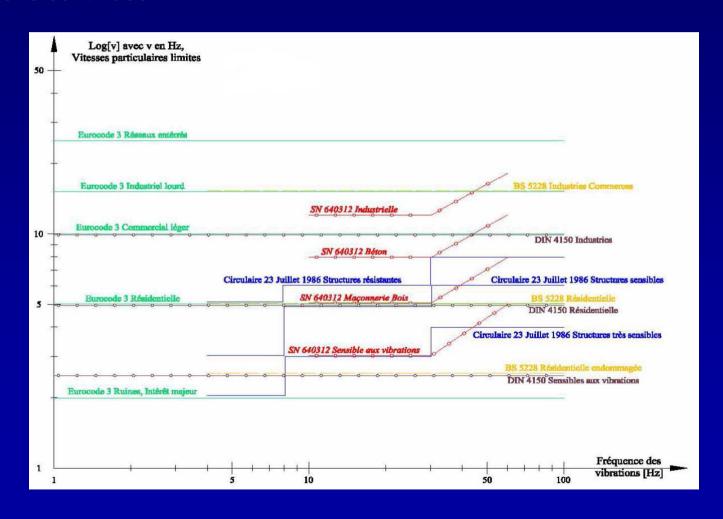
Facteur de	Energie de fonçage						
compression, α							
Type de sable	faible	Moyenne	Forte				
Très lâche	0.02	0.03	0.04				
Lâche	0.01	0.02	0.03				
Moyen	0.005	0.01	0.02				
Dense	0.00	0.005	0.01				
Très dense	0.00	0.00	0.005				

Propagation des ondes dans le sol



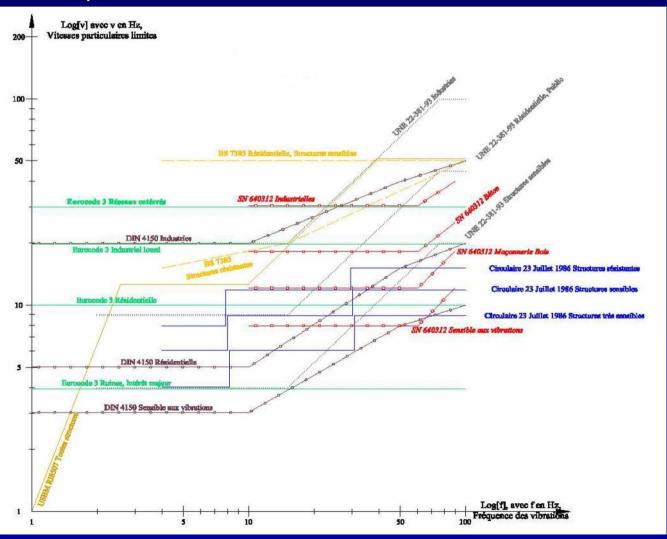
exemple

Quelques critères d'acceptation en France et à l'International



Pays	Norme	Date d'application	Paramètres pris en compte Type de vibrations : I : Impulsionnelle; IP : impulsions périodiques; C : vibrations continues e							
			Fréquence	Vitesse totale	Composante de la vitesse particulaire	Distance	Type de terrain	Type d'édifices	Type de vibrations	Type d'activité
Allemagne	DIN 4150	1975	Oui	Non	Oui	Non	Non	Oui	I, IP	Non
USA	USBN	1980	Oui	Non	Oui	Non	Non	Oui	I, IP	Non
	OSM 817.67	1983	Oui	Non	Oui	Non	Non	Oui	I, IP	Oui
Italie	UNI 9916	1991	Oui	Non	Oui	Non	Non	Oui	I, IP	Non
Suisse	SN640312a	1992	Oui	Oui	Non	Non	Non	Oui	I, C	Non
France	Circulaire du 23/07/1986	1986	Oui	Non	Oui	Non	Non	Oui	I, IP, C	Oui
Portugal	NP 2074	1983	Oui	Oui	Oui	Non	Oui	Oui	I	Oui
Espagne	UNE 22-381	1993	Oui	Non	Oui	Non	Non	Oui	I, IP	Non
Suède	SS4604866	1991	Oui	Non	Oui	Oui	Oui	Oui	I, IP	Oui
Australie	AS2187	1993	Oui	Non	Oui	Non	Non	Oui	I, IP	Oui
Inde	CMRI	1991	Oui	Oui	Oui	Non	Non	Oui	I	Non
Angleterre	BSI5228	1997	Oui	Non	Oui	Non	Non	Oui	IP, C	Non
	BSI7385	1993	Oui	Non	Oui	Non	Non	Oui	I, IP	Non
Ecosse	PAN50	2000	Oui	Non	Oui	Non	Non	Oui	I,IP	Non
Brésil	NBR 9653	1983	Non	Non	Oui	Oui	Non	Non	I, IP	Non

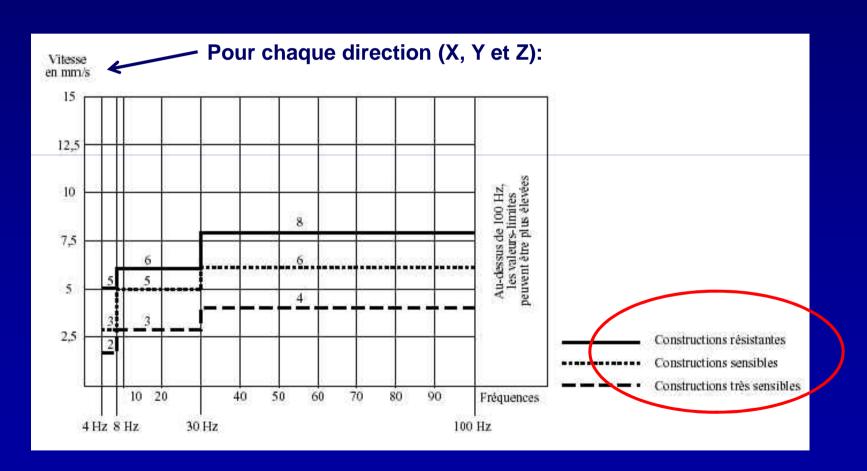
Quelques critères d'acceptation en France et à l'International


Vibrations continues

Quelques critères d'acceptation en France et à l'International

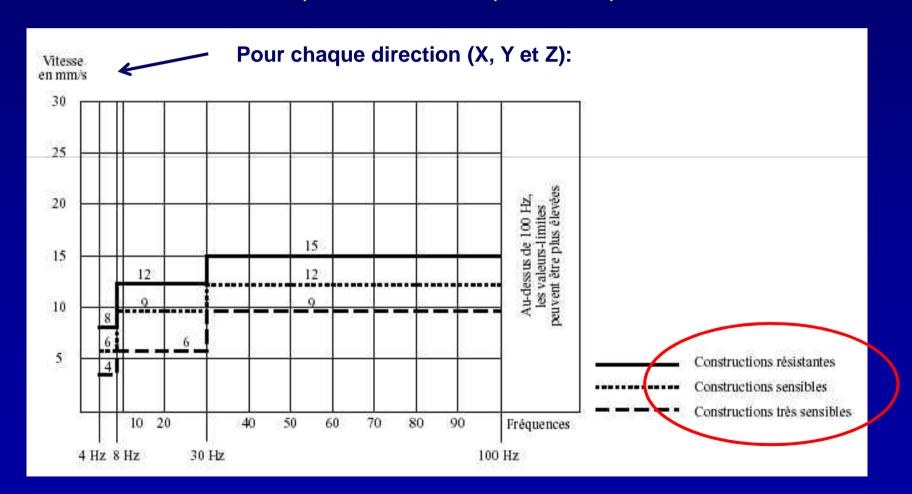
Vibrations impulsionnelles

Critères d'acceptation en France



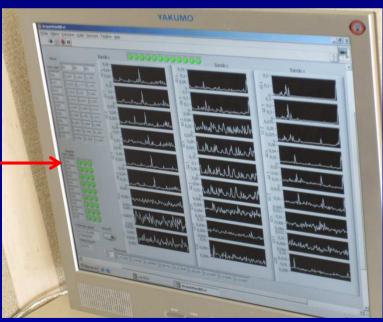
- Norme SNCF IN 1226 « emploi d'explosifs et autres procédés spéciaux , utilisation d'engins mécaniques puissants »
- Circulaire du 23 juillet 1986 relative aux vibrations mécaniques émises dans l'environnement par les installations classées pour la protection de l'environnement »

Critères d'acceptation en France


Cas des vibrations continues:

Critères d'acceptation en France

Cas des vibrations impulsionnelles à impulsions répétées



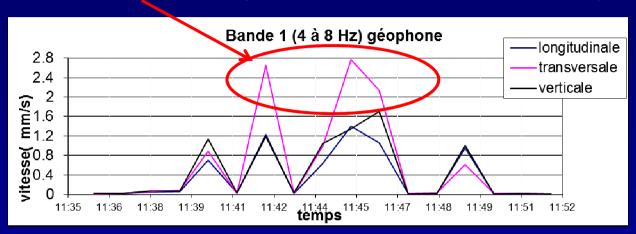
Moyens de mesure

- Capteurs: géophones 3D
- Système d'acquisition de données et de traitement de signal/ gestion d'alarme

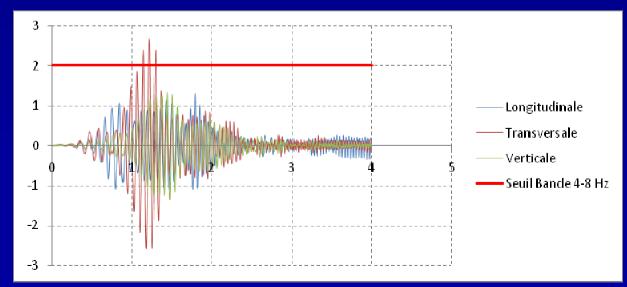
Qu'enregistre-t-on?

Classiquement: l'acquisition est effectuée en enregistrant toutes les minutes la vitesse particulaire maximum dans chaque direction et pour chaque bande de fréquence soient $3 \times 3 = 9$ données par minute Si le seuil est dépassé:

- 1. le signal temporel correspondant est enregistré pour éventuel traitement ultérieur
- 2. déclenchement d'une alarme


Plus spécifiquement:

- Une mesure « amont » permet de proposer des réglages de vibrofonceurs préalables
- Des dispositions spécifiques des géophones permettent une estimation de l'amortissement en fonction de la distance au point d'impact


résultats

Exemple de dépassement lors d'un suivi (vibration continue: limite: 2 mm/s)

Signal temporel correspondant

En Conclusion

On ne mesure pas des vibrations mais les vitesses particulaires en un point!

Nécessité de connaître l'objectif recherché (contrôle? Amortissement? Optimisation d'une méthode? Simulation numérique ?....)

Nécessité de connaître le référentiel (SNCF? Recommandations1986? Autre? (pouvant d'ailleurs nécessiter des programmations spécifiques))

Besoin d'une analyse en temps réel ou d'un stockage de données?

TOUS CES ELEMENTS PERMETTENT D'OPTIMISER LES MESURES