GUIDE AFPS/CFMS

« Procédés d'amélioration et de renforcement de sols sous actions sismiques »

Caractéristiques dynamiques des sols et reconnaissances

Etienne Flavigny

CHAPITRE 4 et Annexe B

- 4.1. Consistance des reconnaissances
 - 4.1.1. Adéquation des moyens de reconnaissances
 - 4.1.2. Détermination du profil du sol
 - 4.1.3. La mesure des paramètres
 - 4.1.3.1. Par les techniques in situ
 - 4.1.3.2. Par les techniques de laboratoire
- 4.2. Comportement dynamique des sols
 - 4.2.1. Module de cisaillement et amplitude de la déformation
 - 4.2.2. Définition de l'amortissement
 - 4.2.2.1. exemples de résultats
 - 4.2.3. Corrélations
 - 4.2.4. Mesure des caractéristiques après amélioration
 - 4.2.4.1. Traitement dans la masse
 - 4.2.4.2. Avec renforcement

CHAPITRE 4 et Annexe A (Suite)

4.3. Liquéfaction

- 4.3.1 Critère global de liquéfaction
- 4.3.2 Mécanisme de la liquéfaction
- 4.3.3 Evaluation du potentiel de liquéfaction
 - 4.3.3.1 A partir du S.P.T.
 - 4.3.3.2 A partir du C.P.T.
 - 4.3.3.3 A partir du CPTU
 - 4.3.3.4 Utilisation de la mesure de Vs
 - 4.3.3.5 Essais de laboratoire

Partie présentée dans l'exposé suivant de M. DURAND

CHAPITRE 4 et Annexe A (Suite)

B.1. Essais de sols à partir de la surface

- B.1.1. Réfraction sismique
- B 1 2 Méthode SASW
- B.1.3. Méthode CSW
- B 1 4 Méthode MASW
- B.1.5. Mesure de bruit de fond

B.2. Essais de sols en forage ou in situ

- B.2.1. Méthode Downhole
- B.2.2. Méthode Uphole
- B.2.3. Méthode Cross Hole
- B.2.4. Méthodes soniques couplées à des essais de pénétration
- B 2 5 Dilatomètre Marchetti
- B.2.6. Les essais S.P.T.
- B.2.7. Les essais au pénétromètre statique CPT
- B.2.8. Les essais au piézocone
- B.2.9. Les essais pressiométriques

B.3. Par les techniques de laboratoire

- B.3.1. L'essai à la colonne de résonance
- B.3.2. Essai triaxial cyclique
- B.3.3. Essai de cisaillement simple

La problématique

- Quelles sont les classes de sols ?
- Quels moyens de reconnaissance géotechnique utiliser en fonction des sites?
- Comment définir les sols à améliorer ?
- Comment contrôler l'amélioration des sols ?
- Comment définir les paramètres de calcul ?

Les classes de sol (EC8-5)

Classe			Paramètres							
de sol	Description du profil stratigraphique	ν _{s,30} (m/s)	N _{SPT} (coups/30 cm)	c _u (kPa)						
Α	Rocher ou autre formation géologique de ce type comportant une couche superficielle d'au plus 5 m de matériau moins résistant	> 800	-	_						
В	Dépôts raides de sable, de gravier ou d'argile sur-consolidée, d'au moins plusieurs dizaines de mètres d'épaisseur, caractérisés par une augmentation progressive des propriétés mécaniques avec la profondeur	360 – 800	> 50	> 250						
С	Dépôts profonds de sable de densité moyenne, de gravier ou d'argile moyennement raide, ayant des épaisseurs de quelques dizaines à plusieurs centaines de mètres	180 – 360	15 – 50	70 – 250						
D	Dépôts de sol sans cohésion de densité faible à moyenne (avec ou sans couches cohérentes molles) ou comprenant une majorité de sols cohérents mous à fermes	< 180	< 15	< 70						
E	Profil de sol comprenant une couche superficielle d'alluvions avec des valeurs de ν_{\S} de classe C ou D et une épaisseur comprise entre 5 m environ et 20 m, reposant sur un matériau plus raide avec $\nu_{\S} > 800$ m/s									
S ₁	Dépôts composés, ou contenant, une couche d'au moins 10 m d'épaisseur d'argiles molles/vases avec un indice de plasticité élevé (PI > 40) et une teneur en eau importante.	< 100 (valeur indicative)	_	10 – 20						
S ₂	Dépôts de sols liquéfiables d'argiles sensibles ou tout autre profil de sol non compris dans les classes A à E ou \mathcal{S}_1 .									

L' EC 8-5 définit les classes de sol à partir

de V_s

de N_{SPT}

de c_u

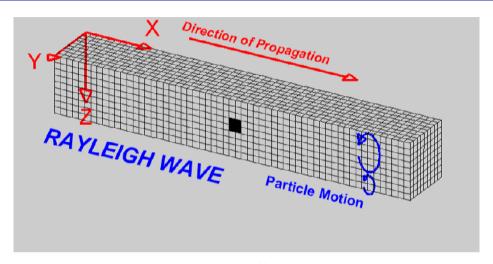
Role prépondérant du Vs

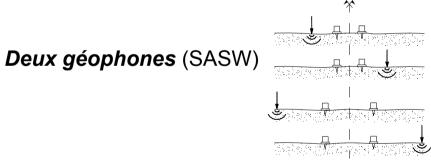
Adéquation des moyens de reconnaissances

Type Méthode	Reconnaissance en masse	Reconnaissance verticale	Essais de laboratoire
Vibro-flottation	?	?	?
Compactage dynamique	?	?	?
Plots pilonnés	?	?	?
Colonne ballastées	?	?	?
Inclusion rigides ries comporteme	? ents statique ST/	? dynamiqueDY ou	? en liquéfaction

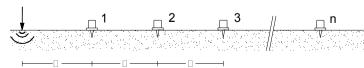
Adéquation des moyens de reconnaissances

	reconnaissance en masse				reconnaissance verticale								essais de laboratoire								
	prospection electrique	prospection géophysique	SASW	CSWS	down hole	Up hole	cross hole	pressiometre	SPT	CPT	CPTU	scissometre	sismocone	DMT	forage avec echantillons intacts	parametres de forage	identification	oedometres	triaxiaux	mesure G et D	triaxial cyclique
		Reconnaissance préalable :						e : moyens à adapter en fonction du type de sol et de projet													
	ST+	DY++	DY+	DY+	DY+	DY+	DY++	ST+ (++) DY++	ST++	ST++	ST++	ST++	DY+		ST++	ST+	ST++	ST++	ST++	DY++	LI++
Méthode amélioration de sol		Reconnaissance complémentaire par type d'amélioration choisi																			
en masse	-	DY++	DY+	DY+	DY+	DY+	DY++														
drains verticaux												ST+ CO+			ST++		ST+	ST++	ST+		
surchage temporaire												ST+ CO+			ST++		ST+	ST++	ST+		
consolidation athmosphérique												ST+ CO+			ST++		ST+	ST++	ST+		
vibroflotation								LI + ST++ CO ++	LI++ ST+ CO+	LI++ ST++ CO++	LI++ ST++ CO++				ST++		ST+				LI+
compactage dynamique								CO++	ST+ CO+	ST++ CO++					ST++		ST+				LI÷
en semi masse plots pilonnés		difficile car sol + inclusion hétérogène																			
		GIIICH	e car soi	+ inciu	sion net	erogene			ST+ CO+	ST++		ST÷			ST++		ST+	ST++			LI÷
colonne ballastée inclusion rigide									ST+ CO+	ST++ CO++		ST++			ST++		ST+	ST++	ST+		LI+
		difficile car sol + inclusion hétérogène						ST+	ST++		ST++			ST++		ST+	ST++	ST+		LI÷	
inclusion de sol malaxé et traité aux liants		GHIRCH	e car sol	→ mem	sion net	erogene															
micropieux									ST+	ST++		ST++			ST++		ST+	ST++	ST+		LI÷
reconnaissance parametres statique (base) ST adapté ++ reconnaissance parametres dynamique DY moyennement adapté + () adapté seulement dans certains types de sol iquefaction contrôle CO																					



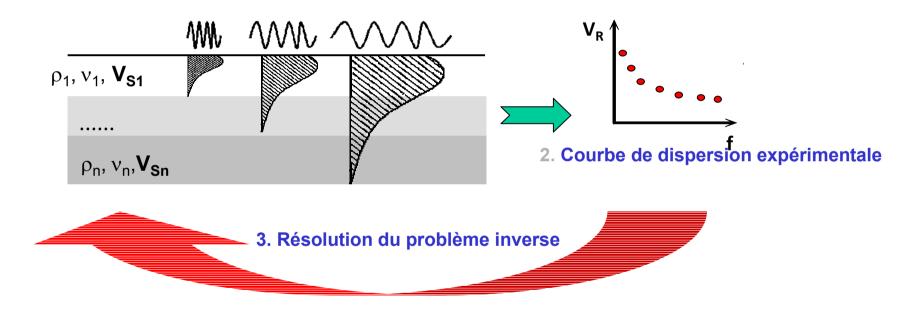

Les essais à partir de la surface

- Essais de propagation d'ondes de surface
- Non intrusifs
- Mesure de la vitesse de propagation des ondes
- **Utilisation de techniques d'inversion**
- Interprétation essentiellement en élasticité isotrope,) milieu homogène (....ou homogénéisé)
- Ne permettent pas de mesure l'amortissement matériel
- Détermination des profils V_{s30}


Les essais d'ondes de surface

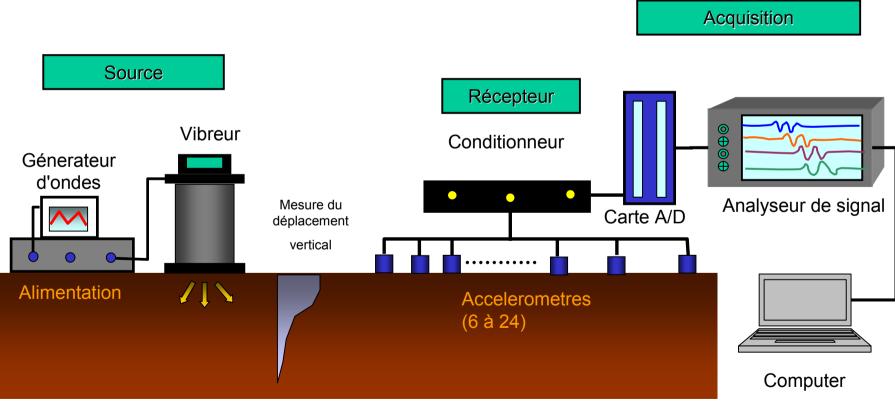
Source de surface soit Impact Soit vibreur

Multi-géophone (MASW, CSW,....) ↓ 1



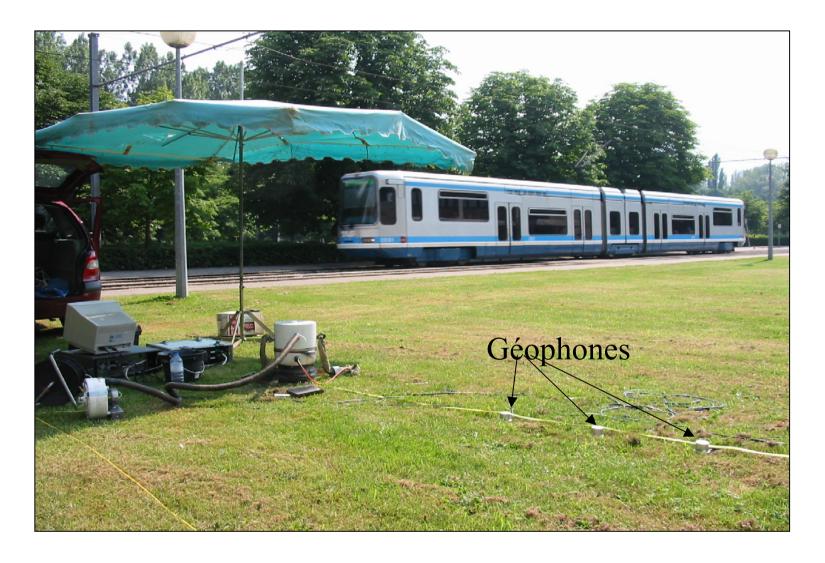
Les essais à partir de la surface

1. Génération d'ondes de Rayleigh



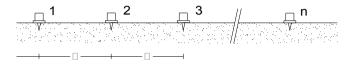
D'après F. Silvestri

Les essais MASW


Multi channel analysis of surface wawes Automatisation Balayage en fréquence

D'après F. Silvestri

Les essais à partir de la surface



Les mesures de bruit de fond

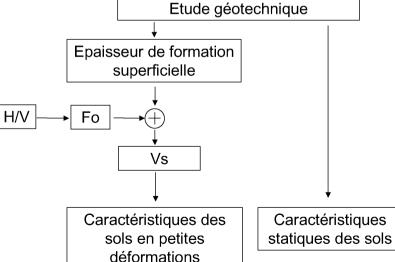
Technique passive

Flute linéaire (ReMi)

-\mathref{m}-

La source est le bruit de fond : vent, Micoséisme, vibrations

Disposition spatiale (SPAC, ESAC,...)


Méthode H/V

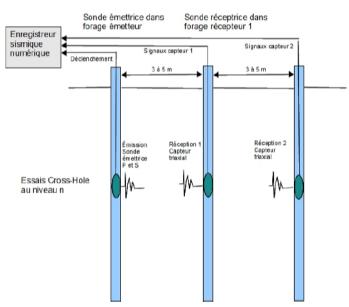
La méthode H/V consiste à estimer la fréquence de résonance d'un site en effectuant le rapport (moyenne des composantes horizontales sur composante verticale des amplitudes spectrales du bruit enregistré. La fréquence F0 de résonance du site, pour un milieu 1D avec une couche d'épaisseur h et

de vitesse d'ondes de cisaillement Vs surmontant un substratum rocheux, est F0=Vs/4h.

Application H/V

- <u>Bruit de fond sismique</u> : bruits aléatoires et périodiques dus aux activités humaines et naturelles.
- <u>Niveau de sollicitation</u> : 10⁻⁵ à 10⁻³ m.s⁻². Accélération des séismes réglementaires en France : 1 à 4.5 m.s⁻².
- Avantages: pas de nuisance, mise en œuvre rapide, légèreté du matériel et coût faible permettant la multiplication des mesures (microzonage sismique).
- Mode opératoire de la méthode ponctuelle de Nakamura (1989) : mesure des vitesses à l'aide d'un capteur et d'une centrale d'acquisition.
- Domaine de fréquence > 1 Hz.

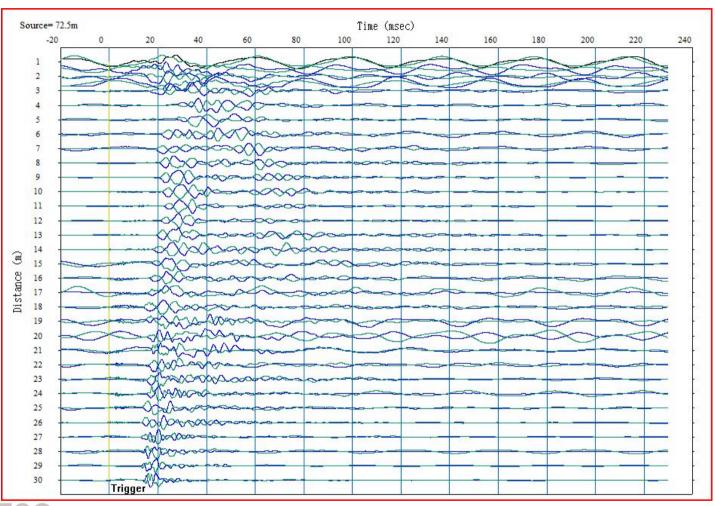
Les essais en forage


- **Essais** "intrusifs"
 - 1 Forage
 - Down hole
 - Sismo cone
 - Seismic Dilatometer
 - Suspension logging
 - 2 (ou 3) Forages
 - Cross hole

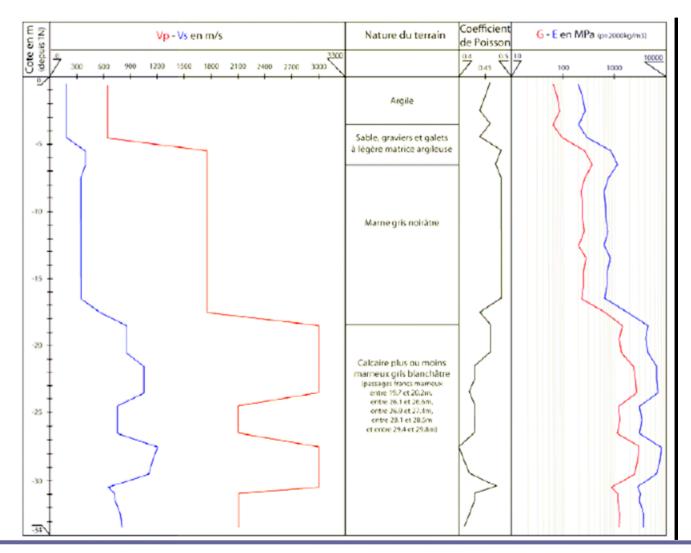
Cross Hole

PRINCIPE DE L'ESSAI CROSS-HOLE

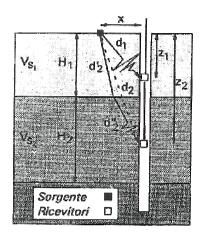
Scellement des tubes/bon contact au terrain

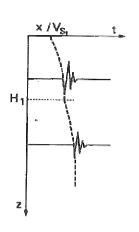

Mesure inclinométrique de distance Mesure de Vp et Vs

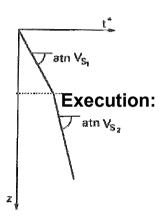
Cross Hole



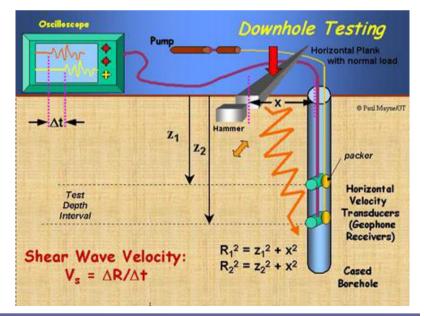
Cross Hole



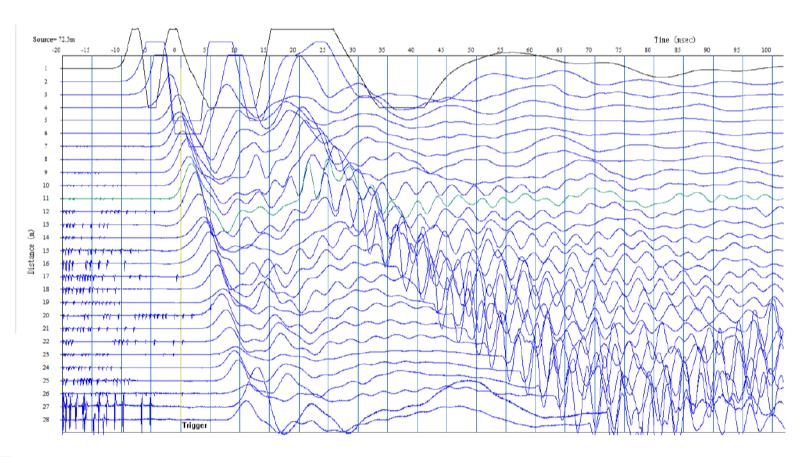




Down Hole

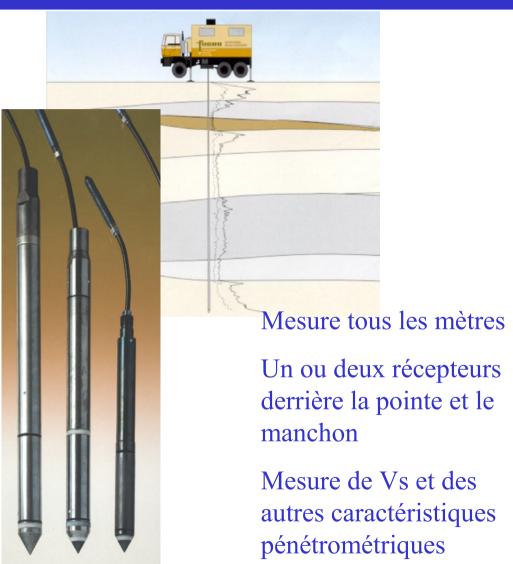

Down-Hole test (DH)

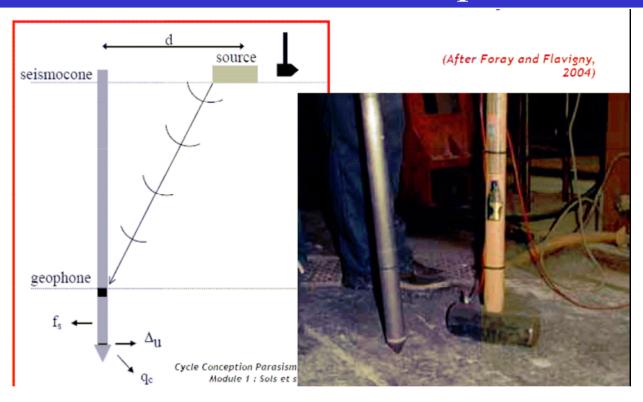
Source en surface Un seul forage Mesure des temps d'arrivée d'onses SH. Atténuation avec la profondeur



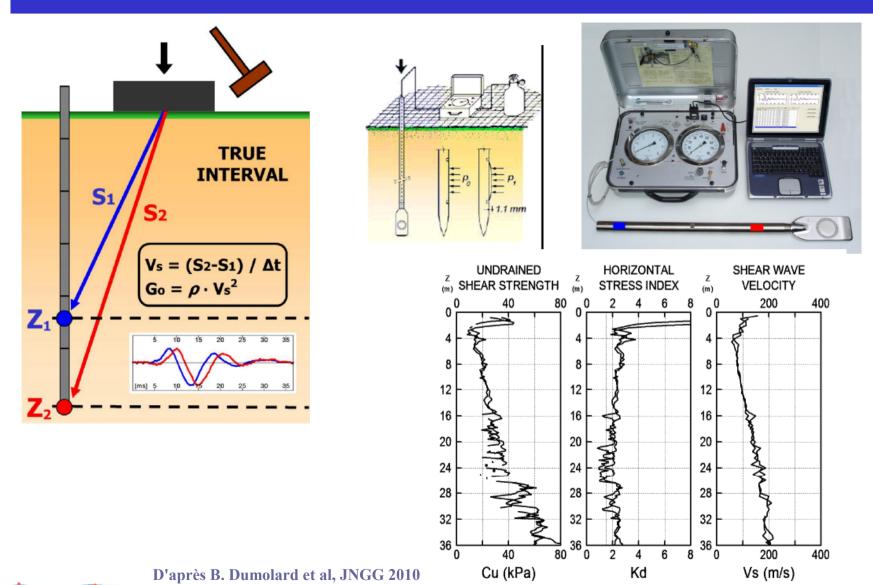
Down Hole

IKEA CLERMONT-FERRAND - ESSAIS CROSS-HOLE ET DOWN-HOLE DU 28/02/2012 - ENREGISTREMENT DES ONDES DE COMPRESSION P



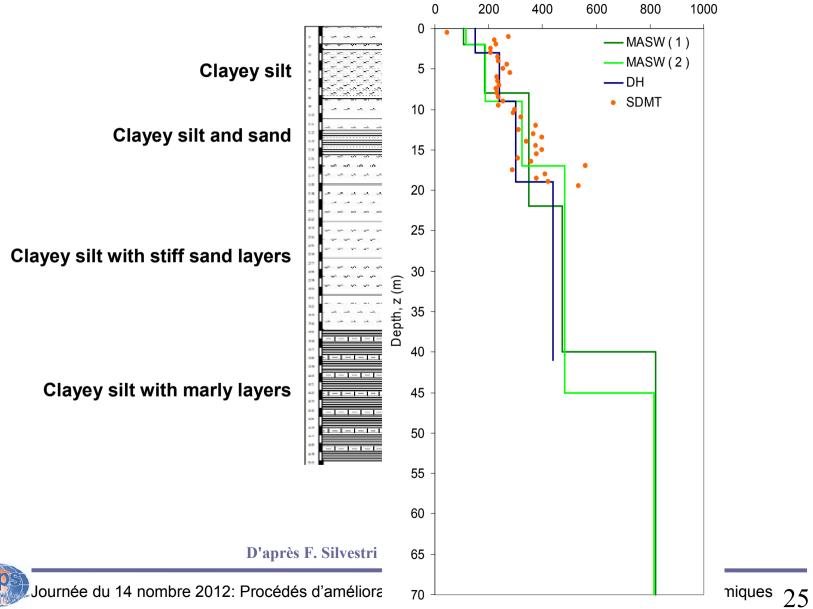

Cône sismique

Cône sismique


Mesure tous les mètres

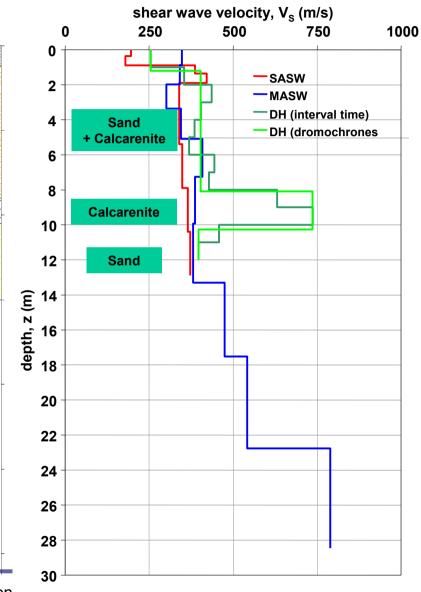
Un ou deux récepteurs derrière la pointe et le manchon

Mesure de Vs et des autres caractéristiques pénétrométriques



Dilatomètre Marchetti SDMT

Quelques comparaisons



SASW/MASW/Down Hole

En conclusion

- Adaptation au terrain
- Objectif : Mesure de V_{S30} : conduit à privilégier les essais géophysiques en forage
- Aucun essai in situ ne permet de mesurer l'amortissement matériel D (ou η)

	СН	DH	SASW/MASW
Nombre de forage	2	1	X
Inclinomètre	Oui	Non	X
Profondeur max	Illimité	Limité	30/50m
Volume testé	Constant	Variable	Variable
Atténuation avec "z"	Non	oui	oui
Résolution	forte	Moyenne	Moyenne
Facilité d'interprétation	Grande	Moyenne	Faible
Cout			

En conclusion

EC8-5

§ 4.2.2 : Détermination du profil de sol pour la définition de l'action sismique

(5) Pour des structures importantes, dans des régions de forte sismicité, en particulier dans les conditions de sols de classe D, S_1 , ou S_2 , il convient d'utiliser des mesures in situ du profil v_s effectuées par des méthodes géophysiques en forage.

Les essais de laboratoire

- Le triaxial cyclique
- L'essai de cisaillement simple
- L'essai à la colonne de résonance
- L'essai triaxial sur cylindre creux (non traité)
- L'utilisation d'éléments fléchissants (bender élements)

Mais

- •Représentativité des échantillons
- •Conditions de prélèvement

Les gammes de déformation

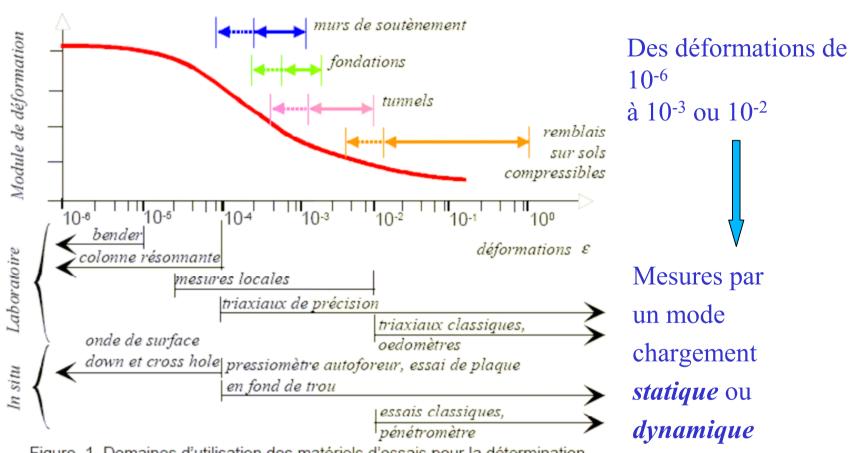
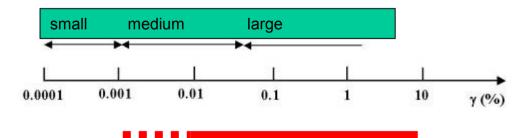
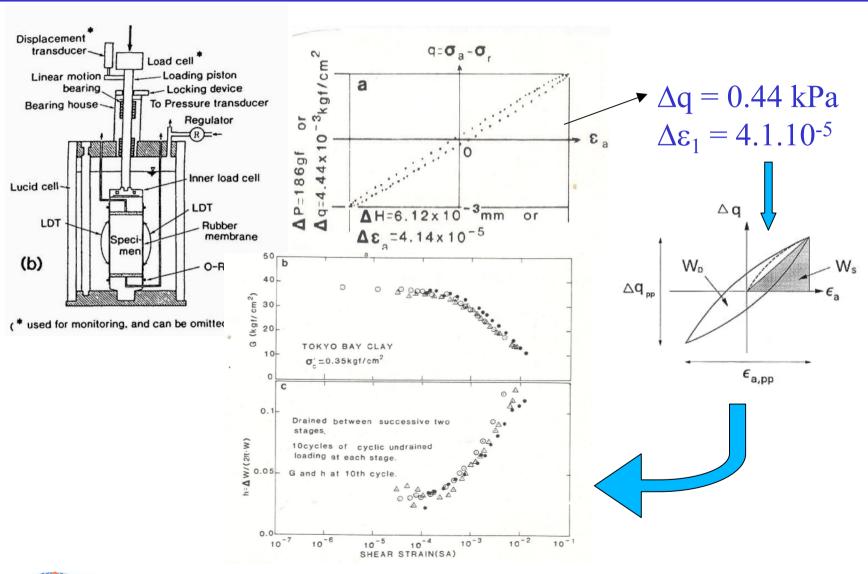


Figure 1. Domaines d'utilisation des matériels d'essais pour la détermination des modules de déformation

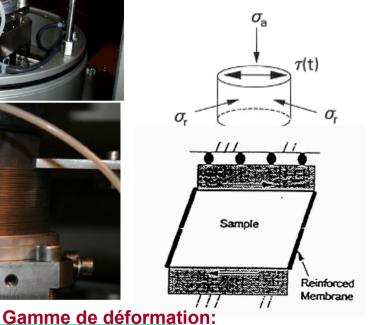

Reiffsteck, Param 2002

L'essai triaxial cyclique

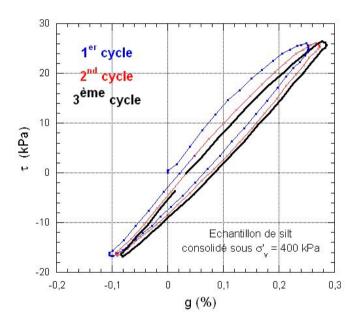
- Grande versatilité
- **Deux utilisations possibles**
 - Etude de la liquéfaction à partir d'essais de labo (voir exposé MM Durand et Berthelot)
 - Mesure des courbes $G(\gamma)$ et $D(\gamma)$
- Mesure des courbes $G(\gamma)$ et $D(\gamma)$
 - Triaxiaux "spéciaux" avec mesures locales des déformations


Gamme de déformation:


L'essai triaxial cyclique



L'essai de cisaillement simple

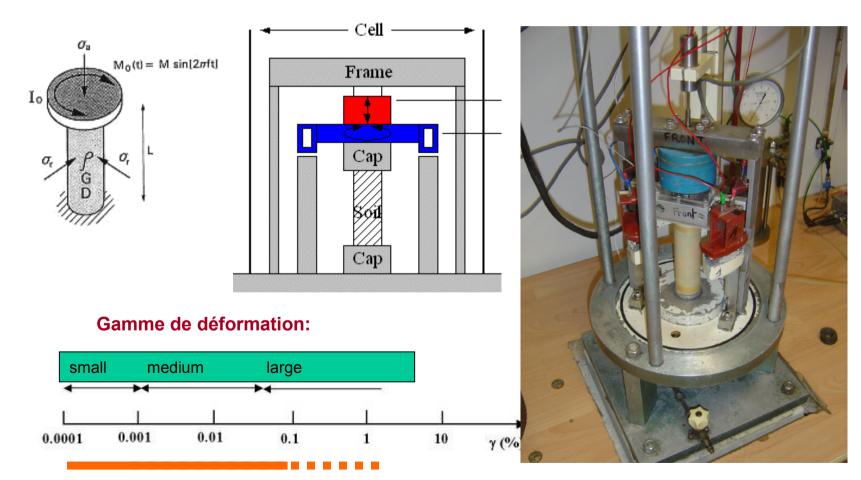


- Peu utilisé en France (1 appareil à l'ECN)
- Reproduit les conditions in situ
- Permet la mesure des courbes $G(\gamma)$ et $D(\gamma)$

DSDSS

medium large 0.01 y (%) NGI

Echantillon de silt argileux Conditions non drainées, Essai cyclique alterné (C. DANO, E.C.N.) D'après C. Dano

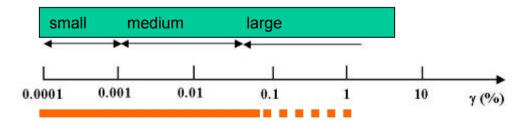

0.0001

small

0.001

La colonne de résonance

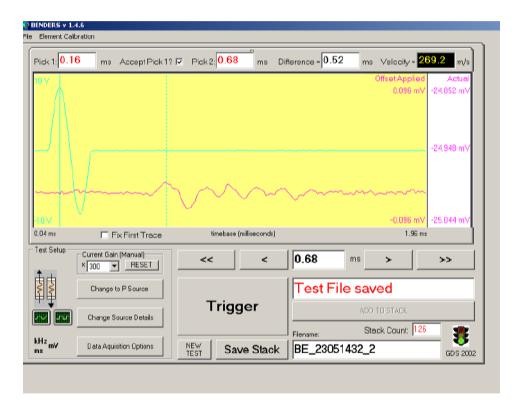
Principe: vibration longitudinale ou en torsion d'un échantillon reconsolidé dans une cellule triaxiale


La colonne de résonance

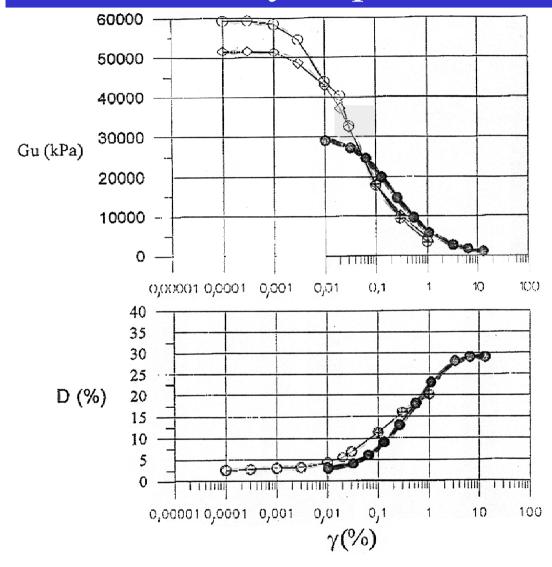
Principe: vibration longitudinale ou en torsion d'un échantillon reconsolidé dans une cellule triaxiale

$$\frac{\partial^2 \theta}{\partial t^2} = V_s \frac{\partial^2 \theta}{\partial x^2}$$
$$G = \rho V_s^2$$

$$\frac{I}{I_0} = \frac{\omega_n L}{V_s} tan \frac{\omega_n L}{V_s}$$



Les éléments fléchissants


Eléments piézoélectriques implanté dans la base et la tête d'une cellule triaxiale

Mesure directe du temps de vol, donc de V_s puis de G_o ou G_{max}

Triaxial cyclique / Colonne résonnante

L'amortissement D

EC 8-5 §4.2.3 : Variation de la rigidité et de l'amortissement en fonction de l'amplitude de la déformation

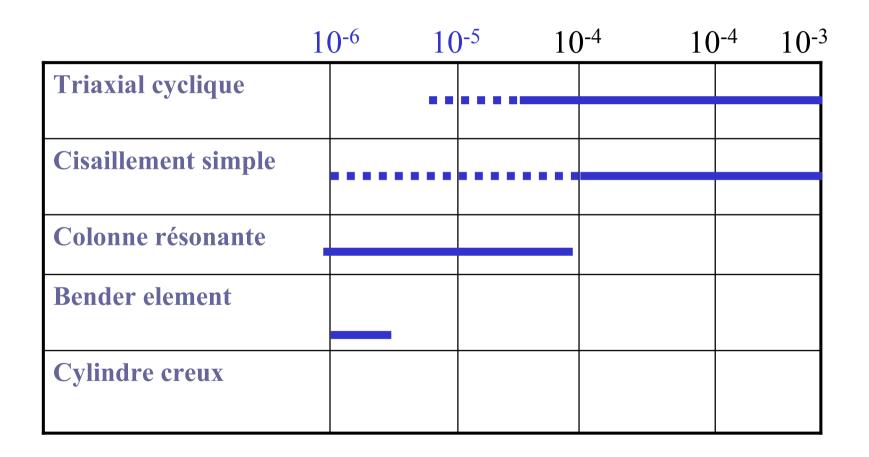
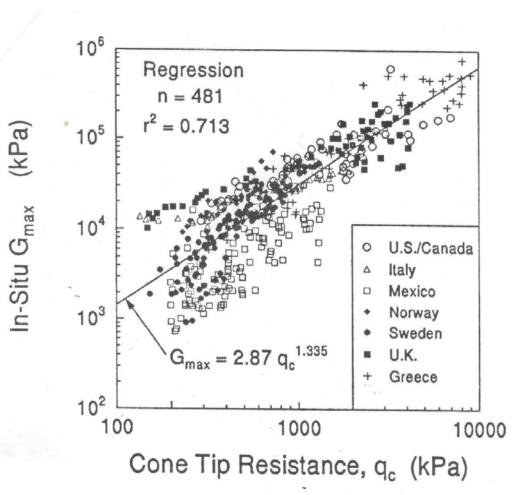

- (1)P La différence entre les valeurs de v_s à faibles déformations, telles que celles mesurées dans des essais in situ, et les valeurs correspondant aux niveaux de déformation induits par le séisme de calcul, doit être prise en compte dans tous les calculs utilisant les propriétés dynamiques du sol dans des conditions stables.
- Pour des conditions locales de sols de classe C ou D, avec une nappe phréatique à faible profondeur, et sans matériaux avant un indice de plasticité PI > 40, ceci peut être réalisé, à défaut de données spécifiques, en utilisant les coefficients de réduction de v_s , donnés dans le Tableau 4.1. Pour des profils de sols plus rigides et un niveau de nappe plus profond, l'importance de la réduction doit être proportionnellement plus faible (et la plage de variation réduite).
- Si le produit a_q ·S est égal ou supérieur à 0,1 g (c'est-à-dire égal ou supérieur à 0,98 m/s²), et en l'absence de mesures spécifiques, il convient d'utiliser les coefficients d'amortissement interne indiqués dans le Tableau 4.1

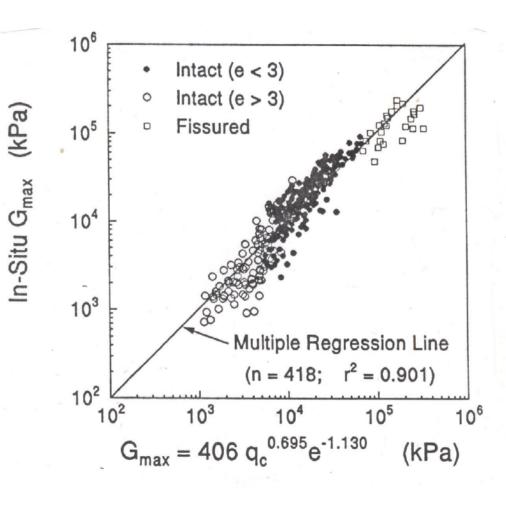
Tableau 4.1 — Coefficients moyens d'amortissement de sol et coefficients de réduction moyens (\pm un écart-type) pour la vitesse v_s des ondes de cisaillement et pour le module de cisaillement G, jusqu'à une profondeur de 20 m

Rapport d'accélération du sol, α·S	Coefficient d'amortissement max.	$\frac{v_{\rm s}}{v_{\rm s,max}}$	G G _{max}	
0,10	0,03	0,90 (± 0,07)	0,80 (± 0,10)	
0,20	0,06	0,70 (± 0,15)	0,50 (± 0,20)	
0,30	0,10	0,60 (± 0,15)	0,36 (± 0,20)	


En résumé

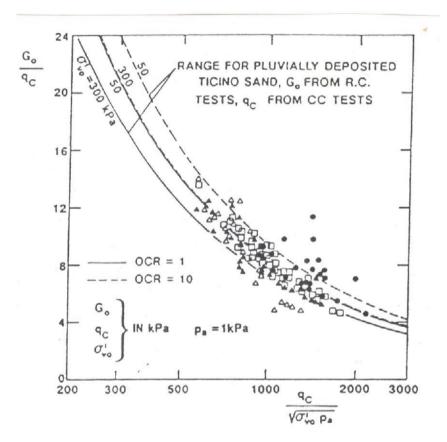
$$G_{\text{max}} = 406(q_c)^{0.695} e^{-1.13}$$

Argiles, Différentes régions du monde



D'après P. mayne

Argiles, Différentes régions du monde



Sables, Vallée du Po et Chambre de calibration

$$G_{\text{max}} = 1634(q_c)^{0.259} \left(\sigma_v^{'}\right)^{0.375}$$

D'après Jamiolkoski et al.

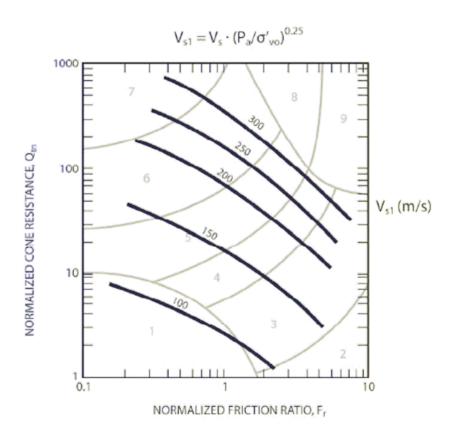


Figure 23 Evaluation of normalized shear wave velocity, V_{s1}, from CPT for uncemented Holocene and Pleistocene age soils (1m/s = 3.28 ft/sec)

$$V_s = [\alpha_{vo} (q_t - \sigma_v)/p_a]^{0.5} (m/s)$$
; where $\alpha_{vo} = 10^{(0.55 \text{ Ic} + 1.68)}$

- Pour des structures importantes, dans des régions de forte sismicité, en particulier dans les conditions de sols de classe D, S₁, ou S₂, il convient d'utiliser des mesures in situ du profil v_s effectuées par des méthodes géophysiques en forage.
- Pour tous les autres cas, lorsque les périodes de vibration naturelle du sol doivent être déterminées, il est possible d'estimer le profil v_s par des corrélations empiriques, en utilisant la résistance à la pénétration in situ ou d'autres propriétés géotechniques, en tenant compte de la dispersion de telles corrélations.

Il est possible d'utiliser, sans investigations complémentaires à celles nécessaires pour le dimensionnement vis-à-vis des actions non sismiques, des paramètres de sol par défaut pour la classification des sols des catégories A à E du tableau 3.1 en vue de la détermination des actions sismiques, lorsque

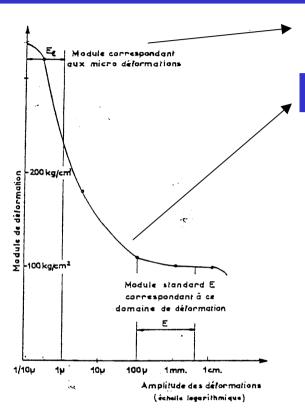
- soit l'ouvrage relève d'un cas de faible séismicité;
- soit, sauf prescription contraire de l'Administration, l'ouvrage est de catégorie d'importance I ou II et la connaissance du sol à l'aplomb de la construction est considérée, par le Maître d'œuvre, comme suffisante du fait des documents de reconnaissance de sol à sa disposition pour définir en toute fiabilité la classe de sol.

Conformément à la clause 4.2.2 (6) de l'EN 1998-5, il est loisible pour les cas précédents, de faire appel à des corrélations empiriques entre v_s et diverses propriétés géotechniques, telles la résistance à la pénétration statique ou le module pressiomètrique, pour définir la classe de sol.

Les ordres de grandeur

- L'EC 8-5 recommande d' "inclure dans les reconnaissances de sol des essais de pénétration au cone, éventuellement avec mesure de la pression interstitielle, chaque fois que cela est réalisable, car ces essais fournissent un enregistrement continu des caractéristiques mécaniques du sol en fonction de la profondeur [§ 4.2.1. (2)]
- Compléter le tableau des classes de sol par
 - Les caractéristiques pénétrométriques
 - Les caractéristiques pressiométriques

Les ordres de grandeur


- Compléter le tableau des classes de sol par
 - Les caractéristiques pénétrométriques
 - Les caractéristiques pressiométriques

Classe de sol		Paramètres			qc MPa	PI MPa
	Description du profil stratigraphique	V _{s,30} (m/s)	N _{SPT}	C _u (kPa)		
Α	Rocher ou autre formation géologique de ce type comportant une couche superficielle d'au plus 5m de matériau moins résistant	> 800	_	_		
В	Dépôts raides de sable, de gravier ou d'argile sur-consolidées, d'au moins plusieurs dizaines de mètres d'épaisseur, caractérisés par une augmentation progressive des propriétés mécaniques avec la profondeur	360 - 800	> 50	> 250	>3.5 argile >20 sable	>1.5MPa argile > 2.5 sable
С	Dépôts profonds de sable de densité moyenne, de gravier ou d'argile moyennement raide ayant des épaisseurs de quelques dizaines à quelques centaines de mètres	180 - 360	15 - 50	70 - 250	De 1 à 3.5 argile De 6 à 20 sable	De 0.4 à 1.5 argile De 0.8 à 2.5 Sable
D	Dépôts de sol sans cohésion de densité faible à moyenne (avec ou sans couches cohérentes molles) ou comprenant une majorité de sols cohérents mous à fermes	< 180	< 15	< 70	<1MPa argile < 6MPa sable	< 0.4 MPa argile < 0.8 sable
E	Profil de sol comprenant une couche superficielle d'alluvions avec des valeurs de v_s de classe C ou D et une épaisseur comprise entre 5m environ et 20m, reposant sur un matériau plus raide avec $v_s > 800 \text{m/s}$					
S ₁	Dépôts composés, ou contenant, une couche d'au moins 10m d'épaisseur d'argiles molles/vases avec un indice de plasticité élevé (PI>40) et une teneur en eau importante.	< 100	_	10 - 20	< 03 Argile	Non mesurable
S_2	Dépôts de sols liquéfiables d'argiles sensibles ou tout autre profil					

Module pressiométrique et G_{max}

Module correspondant aux micro déformations

Module standard

Ménard, Paris 1961 Le pressiomètre Ménard ne donne pas accès à G

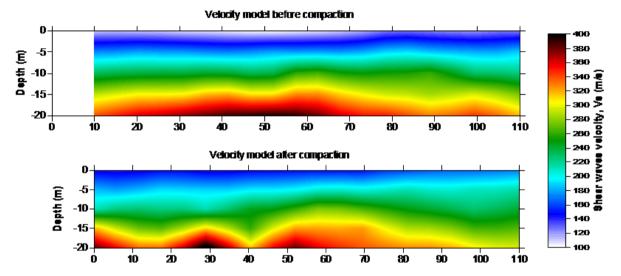
Des ordres de grandeur (E. Jandel)

G max : $12 E_M$ (plage 8 à $18 E_M$)

Fonction tube lanterné/forage/ nature du sol/ surconsolidation

En conclusions

- Les essais in situ en surface ou en forage permettent de mesurer les vitesses Vs et donc le Gmax (avec ρ).
- Ils ne donnent pas accès à l'amortissement.
- Les essais de laboratoires sont tributaires d'échantillons intacts et représentatifs.
- Ils permettent la mesure des courbes $G(\gamma)$ et $D(\gamma)$ sur toute la gamme de déformation 10⁻⁶ à 10⁻³.
- L'EC8-5 recommande les essais CPT ou CPTU



En conclusions

MASW - profil A

Avant travaux

Après travaux

Merci de votre attention

Et de vos questions....

Remerciements

S. Brulé, Ménard

C. Dano, **ECN**

F. Durand, Vinci

E. Jandel, **Fondasol**

J.L. Mattiuzzo, Innogeo

P. Reiffsteck Iffstar

J.F. Serratrice, Iffstar

F. Silvestri U. Napoli

