Joint Meeting BGA and CFMS Friday 2nd December 2011

OBSERVATIONAL METHOD Use of "review" and "back analysis" to implement the "Best Way Out" approach.

By Duncan Nicholson, Director Ove Arup and Partners Ltd

TERRASOL

Bureau d'Ingénieurs-Conseils en Géotechnique Immeuble Central Seine 42-52 Quai de la Rapée CS 71230 75583 Paris CEDEX 12 FRANCE

Contents

- Peck's Observational Method (OM) Principles
 - "Ab Initio" and "Best way Out"
- Ciria (1999) R185
 - OM Definition and Process
- "Predefined Design" and OM "Best Way Out"
- "Best way out" processes
 - Trigger Values
 - Review and back analysis
- Basement Case Histories
 - Kings Place
 - Nicol Highway
 - Canary Wharf Crossrail Station

History - Key dates for UK

- **1969** Peck's Rankine Lecture
- Early 1990's Channel Tunnel, Limehouse Link Projects
- **1994** Geotechnique Symposium in Print
- 1995 EC7 OM Clause
- 1996 ICE and HSE NATM publications
- 1999 CIRIA OM Report No 185
- 2001 ICE Managing Geotechnical Risk
- Ciria C580 Embedded retaining Walls.
- Geotechnet www.geotechnet.org

Peck's (1969) Observational Method – Eight Ingredients

- 1. Sufficent SI to establish general nature / properties of deposits.
- 2. Assess Most Probable and Most Unfavourable conditions.
- 3. Establish **Design** based on **Most probable**.
- 4. Select Monitoring parameters and calculate values.
- 5. Calculate values for **most unfavourable** conditions.
- 6. Select design modification options.
- 7. Monitor and evaluate actual conditions.
- 8. Modify design to suit actual conditions.

Peck (1969) OM applications

"Ab Initio" OM - planned from start of work

- Harris Bank Chicago strut monitoring
- Bay Transit Tunnels V
- Volume loss

"Best way out" OM – introduced during work

- Cleveland Ore Terminal soft clays stockpiles of iron ore
- Cape Kennedy Causeway Hydraulic fill

Ciria (1999) Report 185 - Nicholson, Tse and Penny

Goals

- Clarify OM definition and process
- Integrate OM process into modern design
- Focus on "Ab Initio" applications better planning

CIRIA (1999) - **OM Definition**

•The Observational Method in ground engineering is a continuous, managed, integrated, process of design, construction control, monitoring and review which enables previously defined modifications to be incorporated during or after construction as appropriate. All these aspects have to be <u>demonstrably</u> robust. The objective is to achieve greater overall economy without compromising safety.

•The Method can be adopted from the inception of a project or later if benefits are identified. However, the Method **should not be used where there is insufficient time** to implement fully and safely complete the **planned modification** or emergency plans.

Ciria (1999) R185 Figure 1.2 The OM Process

Focused on Ab Initio OM applications

Design Parameters - Peck's (1969) OM and Current Codes

- Peck (1969)
 - OM conditions/values

- •UK Current Codes
 - CIRIA C580
 - Eurocode EC7

•Not used

- Most Probable
- •Not used

•Mod Conservative or Characteristic

•Most Unfavourable

Worst credible

Predefined Design Process

- Permanent works
- One set of parameters (MC)
- One design / predictions
- Outline construction method
- •Trigger values
- Contractor's temp design /method statement
- Monitoring checks trigger values not exceeded
 - If exceeded Back Analyse -
 - Introduce OM Best Way Out

Emergency plan

The OM Process - Ab Initio

- Temporary works (mainly)
- Two sets of parameters (MC +MP)
- Two designs / predictions
- Integrated design and construction methods
- Methods relate to triggers

- Comprehensive and robust monitoring system
- Review and modify process
 - Contingency plan
 - Improvement plan
- •Emergency Plan

Recovery using OM – "Best way Out" at "Design and Planning" Stage

- Four Processes:-
- R Review
- A Back Analysis
- D Design remaining work
- O Output

Eurocode EC7 Cl 2.7 (1989 and1995)

 Recognised prediction is difficult in Geotechnics – OM used in these cases.

1) Establish limits of behaviour.

- 2) Acceptable probability actual behaviour within limits.
- 3) Monitoring plan, response times and contingencies.
- 4) Contingencies adopted if real outside acceptable range.

UK Design Codes - Soil Strength Parameters

ARUP

Trigger Criteria

Traffic light conditions include:-

- **Green** = Safe site condition.
- **Amber** = Decision stage
- **Red** = Implement planned modifications
- **Emergency** = Evacuation (Not normally part of OM. Required under CHSW Reg (1996). Relates to Ultimate Limit State.)

ARUP

Ciria (1999) Fig 3.13 Multi Stage Excavation

HSE 'Discovery – Recovery' Model eg for tunnelling

ARUP

Case Histories

- Kings Place London
- Nicol Highway Collapse Singapore
- Canary Wharf Crossrail Staion Box
- Donegall Quay CFA piles

Kings Place – OM – Ab initio

- Damage assessment trigger
 50mm max wall deflection
- Diaphragm Wall - 1.0m thick
- 1 level of temporary corner props
- 16m retained height
- Observational Method

Kings Place - Instrumentation

- 14no. inclinometers + 14no. survey targets
- 32no. strain gauges at props
- 40no. Ground survey stations

Frew predictions <u>"Last Stage"</u> data

----- Last Stage W2 ----- Last Stage S2 ------ Last Stage E2

Back Analysis - LS Dyna - 3D model

Small Stain Model3D geometry

•Assess effect of – berm excavation sequences – corner effects

• Soil parameters refined.

•Goal to assess "Characteristic" and "Most Probable" sets of parameters

•Monitoring data compared to numerical analyses.

•Refine trigger criteria for Observational Method

Analysis Summary

• Approx 600,000 elements in 32 material sets.

• 5 Analyses varying:-–Soil parameter. – Suction limits.

• Stages representing 8 steps of excavation modelled.

• Site data compared to model data.

MP and MC Ls-DYNA vs. "Last Stage" data

- Monitored data set matching last stage of model sequence.
- Based on Suction limit of -100kPa. "AnisoBRICK"
- Consolidation

Nicoll Highway Collapse – Not Observational Method

Public Inquiry – Key Lessons

1. Soil model in Plaxis over estimated Marine Clay strength

ARUP

Many other Contributory Factors

- Monitoring and review regime not effective
- Back analysis process not rigorous

Public Inquiry Lessons

- 1. Design
 - Independent check required
- 2. Construction Quality
 - Management / Interpretation of data / instrumentation
- **3.** Contractual Arrangement
 - **D** and **B** Production pressure
- 4. Management/Culture
 - Effective risk management
 - Managing uncertainties and quality

Comment

- Design errors were made.
- Back analysis process did not pick them up properly!

Nicoll Highway Collapse – Implementing lessons

Technical

- Public Enquiry Magnus et al, (2005)
- International Conference on Deep Excavations
 - 28 30 June 2006, Singapore

Legislation

- Building and Construction Authority (BDA)
 - Advisory Note on Deep Excavations (5-May 2005) -Temporary Earth Retaining Structures (TERS)
 - Updated to Advisory Note 1/09 (2-April 2009)– Earth Retaining or Stabilising Structures (ERSS)
 - Updated to Advisory

Canary Wharf Crossrail Station – Lessons learned

Crossrail Station at Canary Wharf

Client - CrossRail

Project Manager – Canary Wharf Contractors Limited

Main Contractor – Laing O'Rourke

- Geotechnical risks
- Conventional design with triggers
- Review process.
- OM Ab Initio modification on final dig stage
- Monitoring Exceeding Triggers

Canary Wharf Crossrail Station Layout

ARUP

Geology along the station box

ARUP

Working with stakeholders – Final scheme evolved from many inputs

Two types of retaining wall – tied back and bermed cantilever walls

Soil-structure interaction – finite element model Exaggerated Plaxis displacement plot

Finite element method – capturing out-of-balance loading (sway) and ground movement

ARUP

Giken push in process 1.2m dia tubes with Crush Auger

Using reaction from 3 pre-installed casing

to install the 4th casing

Chuck designed to extend to receive and push in the 5th casing partially

1. The Silent Piler clamps reaction piles No1-3 and presses-in pile No4.

2. Complete pressing-in pile No4 to the specified height and open Chuck.

Monitoring system

- 19 full monitoring sections inclinometers (manual), load cells and prisms (real time)
- Groundwater and dock water monitoring
- Web based access of monitoring data

Dock fully drained – mid March 2010

Inclinometer readings – main wall and

anchor pile

Dock silt removal and secant piling

Dock silt removal – dig and dispose

Dock silt removal – wash and pump

Guide wall installation C

CFA piling of female soft pile

Triggers Exceeded

Geotech risks:-No allowance for UXO probe Gradual "creep"

UXO Probing Air flush rotary percussive 15m from wall or leakage

Impact of UXO probing on wall deflection and piezometer readings

ARUP

Plunge column installation

Column tolerances

- +/- 25mm in plan
- 1 in 400 verticality

Pile tolerances

- +/- 25mm in plan
- 1 in 75 verticality

Precast guide hole for 2.1m pile

Plunge column guide frame installation

Plunge column installation (18m long, upto 27t)

Level -3 slab nearing completion

Level -6 excavation, blinding, reinforcement etc

OM – Best Way Out – Review and Modify soil parameters

• Tunnel alignment prevented evenly spread of anchor piles

Back analyse Review soil parameters Redesign - Remove berm and intermediate props OM – Best Way Out – New triggers

• The 2D simplified design approach verified using a 3D model when a revised construction sequence was proposed

Ground Conditions – Geotechnical Profile

Soil properties

Construction Sequence

- **Stage 1:** Site preparation.
- Stage 2: Install Sheet Pile walls.
- **Stage 3: 2.0m** excavate remove obstruction / timber piles
- Stage 4: Install CFA pile approx 27m deep.

Sheet Pile Installation

Phase 1 Excavation to +1.5 mOD

Inclinometers 14 March 2006 - Cantilever dig

ARUP

Timber Pile Extraction

Inclinometers 12 April 2006 - Timber Pile Extraction

ARUP

CFA Piling Works and Prop Installation

Inclinometers - 02 May 2006 - CFA Flighting of Sleech

ARUP

Pile 382 – Concreting Revs - 4 rev/m Pile 252 - No rotation during concreting

Over rotation and flighting

- soft clays and loose Sand
- interbedded soils

Minimise flighting

Maximises concrete pressures

Meet EN1536 - Cl 8.4.6.5

Use powered auger cleaner enables auger to be extracted safely without rotation Used on all soil types Auger diameters 300mm – 2000mm About 1m reduction to drilling depth Alternatively - Use cased CFA

Dawson Construction Plant Ltd

Settlements Sheet piles/ Dig / CFA piling

Donegal Quay 02-05-2006

Trigger set at 50mm for whole constract!!

- Review What was causing movement
 - Reassessment of trigger values impact on utilities / buildings

ARUP

Donegall Quay Comments

Construction processes cause ground movments

- Wall installation
- Pile installation
- Anchor installation

- Specify limits and incorporate into movement calculations
- Amber trigger= 3mm
- Red trigger= 5mm

These movements occur rapidly and continuous monitoring required until process is checked!!

Conclusions

• Peck (1969) set out the Principles of OM

- "Ab Initio" and "Best Way Out"
- Ciria (1999) R185 considers only the Ab Initio approach.
- Develop use of Conventional design review best way out
- Kings Place reassessment of triggers set by adjacent buildings
- Nicoll Highway collapse Not OM Lessons on back analysis and redesign processes.
- Canary Wharf Crossrail Station Use of Review Back Analysis and Best Way Out
- **Donegall Quay** Impact of wall / pile / Anchor installation effects

Thank you for your attention.

Any Questions?

