

Caractérisation des matériaux de matelas naturels

J-C. Dupla, J. Canou, A.Q. Dinh, I. Andria-Ntoanina, G. Baudoin, L. Thorel

Amélioration des Sols par Inclusions Rigides

Opération du Réseau Génie Civil et Urbain

Plan

Objectifs

Matériaux étudiés

Dispositifs d'essais

Synthèse des essais sur la grave de St-Ouen l'Aumône (G1)

Conclusion

Objectifs

Bases de données pour la modélisation sur plusieurs matériaux de « référence »

- Identification des matériaux

- Réalisation de programmes d'essais complets (triaxiaux en compression et en extension)

- Détermination des caractéristiques élastiques (E, v) et de rupture (c', $\phi^{\prime})$

Matériaux (1)

Grave de St-Ouen l'Aumône (EUROVIA)

Grave de Chelles (YPREMA)

- matériau recyclé
- caractérisation réalisée par le CNAM (2007)

Matériaux (2)

Mélange de sables d'Hostun (matelas) : essais en centrifugeuse -mélange de 5 granulométries (IFSTTAR Nantes)

Sables et graviers d'Hostun, micro ballast (Matelas) et Mélange sable d'hostun + billes de polystyrène (sol compressible) : Essais sur modèle 1g

Dispositifs d'essais

Matériaux naturels

Triaxial 300 mm

Triaxial 100 mm

Bishop et Wesley (70 mm)

Grave de St-Ouen l'Aumône

- Identification
 - Analyse granulométrique
 - Limites d'Atterberg
 - VBS
 - Teneur en carbonate
- <u>Compactage Proctor</u>
- Essais triaxiaux (Triaxial 300 mm)
 - 2 compacités : 95 % et 85 % de l'OPM
 - 3 pressions de confinement : 25, 50 et 100 kPa
 - Essais de compression et d'extension avec phases de décharge-recharge
 - Mesures locales des déformations
 - Trajet de chargement asservi en extension

Identification de la grave de St-Ouen l'Aumône

Essais de compactage Proctor

Journées des 22 et 23 avril 2010

Opération du Réseau Génie Civil et Urbair

Essai typique (compression)

Mesure du module sur les phases de déchargerecharge

Grave Silico-calcaire

w=7.8 % ; p_=1,97 g/cm³

Journées des 22 et 23 avril 2010

Essai typique (extension)

Opération du Réseau Génie Civil et Urbain

Journées des 22 et 23 avril 2010

Synthèse des résultats

 $\rho_d = 95 \% \rho_{d,opm}$

Compression

200

Contrainte moyenne p (kPa)

300

Extension

Module d'Young

 $\rho_d = 95 \% \rho_{d,opm}$

Caractéristiques de rupture

Synthèse des paramètres obtenus

ρ_d	w	σ'。	C/E ⁽¹⁾	E ⁽²⁾	φ	с	ψ	ν	η ⁽³⁾
	%	kPa	-	MPa	0	kPa	0	-	-
1,96		25	C	320			21,0		
1,96	75	50	C	230	10.0	50	18,4	0.22	1.06
1,96	7,5	100	C	260	48,9	50	15,5	0,23	1,96
1,76		25	C	295			14,5		
1,76	70	50	C	122	10	10	8,0	0.21	1.07
1,76	7,8	100	C	94	40,8	10	6,8	0,31	1,90
1,96		25	E	125			-		
1,96	7.2	50	E	118	40.0	10	_		1 10
1,96	7,3	100	E	84	48,2	18	-	-	1,19
1,76		25	E	130			-		
1,76		50	E	98	47.0	10	-		1 17
1,76	7,7	100	E	58	47,2	13	-	-	1,17

Compression

Extension

(1) C : Compression ; E : Extension

(2) E : pente décharge-recharge (0,1% de déformation axiale)

(3) Inclinaison des contraintes à la rupture (q/p)

Essais avec mesures locales des déformations

Jauge de déformation

 Vue de face
 Vue de dessus

Module de compression K Module d'Young E Coefficient de Poisson v

Journées des 22 et 23 avril 2010

Comparaison mesures locales et globales

Compression

Conclusion

Programmes expérimentaux sur différents matériaux (naturels et traités)

-Essais d'identification

-Essais triaxiaux de compression et d'extension

-Mesures locales des déformations

-Mesures des paramètres d'élasticité et de rupture

Base de données pour la modélisation