Conférence Coulomb Paris CFMS, 10 juin 2011

Evaluation et gestion du risque associé aux géo-hasards

Suzanne Lacasse Directer général INSTITUT DE GEOTECHNIQUE NORVEGIEN NGI

<u>Natural hazards</u> Socio-economic impact in Europe (statistics 1900-2000)

		Hazard	Loss of life	Costs
European	45	floods	10,000	105 B€
statistics	1700	landslides	16,000	200 B€
1900-2000	32	earthquakes	239,000	325 B€

Frequency of landslides in Europe is the highest among natural hazards, compared to floods, earthquakes, cyclones: **20/yr**

Triggering of slides by rainfall

Venezuela, Dec. 1999

Slide triggered by heavy rainfall in Bhutan

Tsunamigenic rock slide Tafjord 1934

After the slide

Effects of rapid gas leakage

Triggering of slides by human activity

Triggering of Landslides by Earthquakes

El Salvador, January 2001

Probably triggered by earthquake Underwater slide

Plan de la conférence

- Management du risque
- Hazard¹, vulnerabilité et appréciation du risque
- Traitement du risque
- Conclusions

Phénomène dangereux

Exemples

Risk Management

- (1) What can cause harm?
- (2) How often or how likely can danger happen?
- (3) What can go wrong?
- (4) How bad are the consequences?
- (5) What should be done?

- **Danger** identification
- Estimation of frequency of occurrence (hazard)
- Evaluation of loss from vulnerability of elements at risk (consequence)
- Assessment of severity of consequence and **risk**
 - Acceptability/tolerability of risk, decision-making and mitigation

Communication within the risk team (pluri-disciplinary) and outside team (including outreach) is needed throughout process

Quantification of Risk

Risk = Hazard x Consequences

- H = Hazard (probability of a threat within a period of time)
- E = Value of element(s) at risk
- V = Vulnerability of element(s) at risk

Terminology: ISSMGE Glossary

UNISDR at http://unisdr.org/eng/terminology/terminology-2009-eng.html

How much risk are we willing to accept?

Depends on whether the situation is voluntary or imposed.

Terminology

Danger (Threat): Phenomenon that could lead to damage; can be an existing or potential threat, but it involves no forecasting.

Hazard: Probability that a particular danger (threat) occurs within a given period of time.

Risk: Measure of the probability and severity of an adverse effect to life, health, property, or the environment.

Also: UNISDR secretariat at http://unisdr.org/eng/terminology/terminology-2009-eng.html

Management du risque – un processus intégré

ISO 31000 (2009)

NG

Risk Assessment changing trend

"Hazardous events only become disasters when people's lives and livelihoods are swept away" -Kofi Annan (2003)

Assessment of vulnerability Model example

(UNEP, GRID-Geneva)

Indicator of vulnerability

Economical

(GDP, poverty index, unemployment, .) <u>Activities</u>

(% arable land, age labour force...)

Quality of environment

(forests, irrigation ...)

Demography

Education

<u>Health</u>

(calory/capita, sanitation, safe water, # doctors, mortality rate ...)

<u>Governance</u>

Warning and coping capacity

Human development

Social and physical vulnerability

- Social vulnerability: the capacity of society to cope with hazardous events
- Physical vulnerability: the degree of expected loss in a system under a specific threat (0 (no loss) to 1 (total loss))

Hazard-consequence plane — Risk diagram

Acceptable / Tolerable Risk and F-N curves

Acceptable Societal Risk is generally based on **expected number of fatalities** and use of **F** - **N Curves. F** is the annual occurrence probability of an event capable of causing **N** or more fatalities.

Typical equation for F-N curve defining acceptable risk:

$\mathbf{F}\cdot\mathbf{N}^{\alpha}=\mathbf{k}$

In general, a single event with many fatalities is less acceptable to the society than several accidents with few fatalities.

Acceptable / Tolerable Risk

Example of Acceptable Societal Risk for slopes from Hong Kong:

Use of **F** - **N** Charts & **ALARP** principle

 $\mathbf{F} \cdot \mathbf{N}^{\alpha} = \mathbf{k}$

k = 0.001, α = 1 (blue curve)

ALARP = As Low As Reasonably Practicable

RISK EVALUATION – Protection Ojectives in Practice

10⁻¹ Belg 10-3 United Kingdom Annual proba-ANCOLD / AGS 10-5 bility NSW 10-7 10-9

Comparison of Acceptable Societal Risk criteria in different countries

(Ken Ho 2009; Government of Hong Kong SAR, CEDD, Geotechnical Engineering Office, Personal Communic

10

100

1000

10000

10⁻¹¹

1

Risques 'acceptés'

Examples of F-N curves (Whitman, 1984)

Qualitative Risk Assessment

http://images.tmcnet.com/tmc/misc/article-images/Image/exec%20brief.jpg

Analyse et management du risque

2 questions émergentes:

- 1) Comment évaluer le risque pour les hazards en cascade (cascading hazards) et les multi-risques?
 - 1) Chine: tremblement de terre \rightarrow glissements de terrain \rightarrow rupture de barrage
 - 2) Japon: tremblement de terre \rightarrow tsunami \rightarrow accident nucléaire
 - 3) France (1999, 2002): inondations \rightarrow désastre environmental

L'analyse des multi-risques relève de plusieurs champs d'expertise, est fragmentée et n'a pas de traitement théorique fiable aujourd'hui.

Analyse et management du risque

2 questions émergentes:

- 2) Dans plusieurs contextes, l'expert seul ne peut sélectionner les mesures de traiteetn du risque les plus appropriées. Une approche multi-disciplinaire est nécessaire, et fortement appuyée par l'ONU.
- Un facteur décisif dans un événement devenant un désastre ou non, est la vulnerabilité de la population, i.e. sa capacité à se préparer, répondre et de retourner à la normale après un événement extrême ("coping capacity")..

Les multi-risques

Interaction et amplification des risque (cascading hazards, effets en cascades): *i.e. le multi-risque est plus que l'aggrégation de chaque risque séparement.*

Vulnerabilité dynamique aux multi-risques: i.e. comment la vulnerabilité change avec le temps with time avec différents événements, et comment la vulnerabilité change quand différents dangers se produisent presque en même temps.

Application des mesures des multi-risques: *i.e.* en pratique, comment limiter les fatalités et dommages de manière effective.

Perception du risque

Max Geldens Stichting, 2002

Plan de la conférence

- Management du risque
- Hazard¹, vulnerabilité et appréciation du risque
- Traitement du risque
- Conclusions

Phénomène dangereux

Exemples

Risk Assessment

Likelihood of occurrence of **hazardous event**

"Value" (loss of life, moneys involved, environment damage, ...) of **vulnerable assets**

(R) = f((H), (V), (E))

Expected level of adverse consequences as result of hazardous event occurring

> Propensity of the human, social, physical, economic, environmental, cultural, institutional and political assets to suffer damage from hazardous event

Scenario-based hazard and risk assessment for landslides (based on Nadim and Glade, 2006)

- Define <u>scenarios</u> for landslide triggering and associated occurrence probability
- Compute <u>run-out distance</u>, <u>volume</u> and <u>extent</u> of landslide for each scenario
- Estimate losses for each scenario
- Estimate <u>risk</u> and compare it with tolerable or acceptable risk levels

Factor of Safety is not a sufficient indicator of safety margin because the <u>uncertainties</u> in the analysis parameters affect probability of failure and safety

It is better to be probably right...

... than to be exactly wrong

Some landslide-vulnerable categories...

Intensity much smaller than resistance: Vulnerability is almost 0

Landslide intensity (V= I x S)

Model

$$I = k_{S} \cdot \left[r_{D} \cdot I_{D} + r_{G} \cdot I_{G} \right]$$

Symbol	Description
k_S	Spatial impact ratio
r _D	Dynamic relevance factor
r _G	Geometric relevance factor
I_D	Dynamic intensity component
I_G	Geometric intensity component

Spatial impact ratio

Expresses how much the category is affected spatially by a landslide Defined in the range [0,1]

Spatial impact ratio

Geometric intensity

Accounts for dimensional properties of sliding masses (e.g. depth, volume, displacement, area,...)

Only constraint: defined in range [0,1]

Dynamic intensity

e.g. proposed model for structures (after Cruden & Varnes,'96)

VIS approach

- Allows quantitative vulnerability estimation
- Operates at category-level (user-defined)
- Applicable to any landslide type
- Allows user-defined input models
- Numerical results must be assessed with care!

Plan de la conférence

- Management du risque
- Hazard¹, vulnerabilité et appréciation du risque
- > Traitement du risque
- Conclusions

Phénomène dangereux

Exemples

Consequences (Elements at risk and vulnerability)

Mitigation measures (landslides)

Physical (structural) measures

Slope stabilisation, drainage, erosion protection, channelling, vegetation, ground improvement, barriers, elevated land, anchoring and retaining structures etc

Non-structural measures

Early warning systems, land-use planning, public awareness, emergency preparedness, enforcement of building codes and good construction practice, measures to pool and transfer the risks etc

Bhutan: surface water system for road stabilization in an unstable slope

High capacity drainage channels for protecting villages in Sikkim

Slide scars close to Oslo

Assigning scores to hazards and consequences and estimating "risk classes"

Hazard classes	Consequence classes		
Low	Low		
Medium	Medium		
High	High		

Weighting significance of hazards and consequences

Hazard indicators

Topography Earlier sliding Height of slope Inclination of slope

Geo characteristics OCR Pore pressure Thickness of clay

Sensitivity

Conditions

Erosion Human activity

Consequence indicators

Human life and health Number of dwellings Humans in industrial buildings

Infrastructure Roads (traffic density) Railways Power lines

Private property Buildings Effect of floods Determination of risk indicator

Risk indicator : H_i • C_i

Hazard indicator, H_i $\sum (H_{Score} \bullet H_{Weight})$

Consequence indicator, C_i $\sum (C_{Score} \bullet C_{Weight})$

Hazard Indicator

Hazard indicator	Woight	Score value			
	weight	3	2	1	0
Earlier landslides	1	Frequent	Some	Few	None
Height of slope	2	>30 m	20 – 30 m	15 – 20 m	<15 m
Overcons'tion ratio (OCR)	2	1.0-1.2	1.2-1.5	1.5-2.0	>2.0
Pore pressure: - In excess (kPa) - Underpressure (kPa)	3 -3	> + 30 > - 50	10 – 30 -(20 – 50)	0 – 10 -(0 – 20)	Hydrostatic Hydrostatic
Thickness clay layer	2	>H/2	H/2-H/4	<h 4<="" th=""><th>Thin layer</th></h>	Thin layer
Sensitivity, S _t	1	>100	30-100	20-30	<20
Erosion	3	Active/slide	Some	Little	None
Human activity: - Worsening effect - Improving effect	3 -3	Import't Import't	Some Some	Little Little	None None
Max. weighted score		51	34	16	0
% of max. Weighted score		100 %	67 %	33 %	0 %

Consequence Indicator

Element at rick		Score for consequence			
Element at risk	Weight	3	2	1	0
No. of housing units	4	> 5 Closely spaced	> 5 Widely spaced	< 5 Widely spaced	0
Persons in industrial buildings	3	> 50	10 – 50	< 10	0
Value of buildings	1	High	Significant	Limited	None
Roads (traffic density)	2	High	Medium	Low	None
Railways (importance)	2	Highl	Medium	Low	None
Power lines	1	Main	Regional	Distribution network	Local
Consequence of flooding	2	Critical	Medium	Small	None
Max. weighted score		45	30	15	0
% of max. Weighted score		100 %	67 %	33 %	0 %

Risk matrix and required actions

	Consequence Low	Consequence Medium	Consequence High
Low hazard (probability)	Low risk	Low risk	Medium risk
Medium hazard (probability)	Low risk	Medium risk	High risk
High hazard (probability)	Medium risk	High risk	High risk

Require new site investigations Require stability calculations Require mitigation measures

Tegnforklaring

GEOVEKST Kartgrunnlag: N5-raster ©GEOVEKST

Barty seating Uby Uby States

NORGES VASSDRAGS- OG ENERGIDIREKTORAT

RISIKO FOR KVIKKLEIRESKRED	Rapporter 20001008-27	Kartolag m 09
Risikokart, Grong	Univert TrV	Data 2006-03-14
Välestokk hovedkart 1: 50 000 Välestokk oversiktskart 1: 500 000	Kontraslierr OAH	
Datum: EUREF89, Kartprojeksjon: UTM, Sone: 33	Qodqent OG	NG

Risk zone III - Safety is too low – Mitigation with counter fill

Drammen Countermeasures in Zones II

- No excavations
- Ground improvement
- Ban on new construction or new foundation work uphill

Tailings/Rockfill Dam Project - Risk analyses

Rosia Montana TMF - Design Criteria

 \oplus

Ð

- International Best Practice
- Meets or exceed:
 - Romanian Standards
 - International Tailings Dam standards
 - International CN Management Code
- Earthquakes:
 - Richter M8 Earthquake,
- Floods:
 - Facility has reserve storage capacity for twice PMP rainfall (can occur once in 100 million yrs)
 - Spillway added as additional safety measure
 - Construction of "tailings dam" with rockfill

What could happen to the TMF and to neighbouring environment?

MWH

DOM: A CONTRACT COMPLEX

œÐ)

- If an earthquake strikes
- If unusually intense rainfall occurs
- If a slide occurs on the hillside
- If the stockpile causes a foundation failure
- If dam crest settles
- If those triggers occur at the same time

• ...

All plausible scenarios (triggers/events) were examined

Tailings Dam Construction Process

Completed Starter Dam

Hazard and Risk Assessment of Tailings Management Facility (TMF)

MWH

DING & SETTER MARK

 (\oplus)

Hazard: Probability that a breach in the TMF occurs

<u>Risk associated with dam breach:</u> Looks at probability of occurrence and consequence of breach

How did we do the evaluation?

 Assembled dam and risk experts from USA, Norway, Canada and Romania, including past President of ICOLD (International Commission of Large Dams)

MWH

- Established all plausible scenarios where TMF could release tailings and water, during the entire life of the TMF
- Quantified <u>how often</u> these scenarios can happen
- Looked at the possible consequences

Critical mode screening

<u>Time in dam life</u> Trigger/event	<u>1.5 yrs</u>	<u>4 yrs</u>	<u>9-12 yrs</u>	<u>16 yrs</u>
10.000-yr earthquake *	X			Х
10,000-yr rainfall/flood/snowmelt *	X			
Operational delays	Х	Х		
Failure of valley slopes (natural terrain)		Х		
Failure under waste stockpile			X	Х
Internal erosion	X			
Liquefaction of tailings			X	X

* Includes all failure modes, from foundation failure, dam slope instability, dam abutment failure, internal erosion and toe unravelling, when relevant.

Tailings

Completed dam (TMF)

Example of a scenario

-Completed Dam

Total probabilities of non-performance per configuration

Configuration	Trigger/Event	P[Consequence	P[Consequence
Starter Dam Configuration A, (1,5 yr, internal erosion)	All triggers All non-performance modes	1.4 x 10 ⁻⁶ /yr	
Final Corna Dam Configuration C (16 yrs)	All triggers All non-performance modes		1.3 x 10⁻ ⁶ /yr
Corna Dam Configuration B (4 years)	All triggers All non-performance modes		6. 5 x 10 ⁻⁷ /yr
Corna Dam Configuration D (9-12 yrs)	Static liquefaction in tailings		1.3 x 10⁻ ⁶ /yr

Probability of dam breach Comparison with existing dams

Physical Impacts

Physical impacts if dam breach occurs:

- > Tailings flow a couple of 100 meters
- > Tailings volume of 250,000 m³ and 26,000 m³ of water
- Conducted water model with this discharged into Abrud river

(#) MWH

Limited and temporary Cyanide levels above regulated standards in vicinity of downstream valley

Confidence in risk estimate? Tsunami in Indian Ocean, 26 Dec. 2004

Risk associated with earthquake followed by tsunami extremely difficult to quantify: Low hazard and catastrophic consequence: mathematically close to " $0 \times \infty$ problem"

Evolution of tsunami risk with time

eround

NG

- A: Situation today (June 2005)
- **B:** Situation in 50-100 years

Norwegian Geotechnical Institute

- C: Situation in 100-200 years
- **D: Situation in 200-300 years**
- **E: Situation before 26 Dec.**

2004 and after ~300 years

Norwegian Geotechnical Institute

ground

Confidence in risk estimate

Example Usoi Dam on Lake Sarez in Tajikistan

Usoi Dam is a 600m high <u>landslide dam</u>.

It is the largest dam in the world!

Disaster scenarios at Lake Sarez

Right bank active landslide

Current rate of movement is ~15 mm/year

How big is Usoi dam?

Bennett dam, 183 m One of the largest dams in North America

Eiffel tower in Paris

Horizontal scale of Usoi Dam is compressed

Threat and consequences

- Lake Sarez behind the dam currently holds 17 km³ of water.
- If the dam were to fail, the resulting flood would be a catastrophe of inconceivable dimensions!

Valleys downstream

Flood waters would flow down the Bartang valley to the Panj River valley and end up in the Aral Sea.

Bartang valley

Adding an early warning system (EWS)

<u>Risk diagram</u> Annual probablility vs number of casualties

Previous rockslide events in postglacial times in the Storfjord region

Overview of the Åknes rock slope

Volume that might fail: Up to (?) 70 x 10⁶ m³

Modelling of rock slide

- **TITAN2D** (GMFG Buffalo)
- DAN3D (McDougall & Hungr UBC)
- RAMMS (SLF)

Numernical modelling of generated tsunami

Participatory process Event tree analyses

- rockslide due to seismic trigger
- rockslide due to high pore pressure trigger
- rockslide due to weathering and creep trigger
- tsunami wave against Hellesylt
- consequences of tsunami
- optimum observations for early warning

People involved

- manager for Åknes/Tafjord project
- mayor of community
- social scientist from community
- city planner from community
- policeman working on emergency plans and evacuation
- local politician
- representative from community
- journalist/media
- officer from ministry of highways
- directorate for safety and emergency preparedness
- risk analysis specialist

- meteorologist
- physical geographer
- social geographer
- geologist
- engineering geologist
- rock mechanics specialist
- geotechnical engineer
- tsunami specialist
- instrumentation specialist
- earthquake engineer
- seismologist
- mathematician
- statistician

ETA done

- rockslide due to seismic trigger
- rockslide due to high pore pressure trigger
- rockslide due to weathering and creep trigger
- tsunami wave against Hellesylt
- consequences of tsunami
- optimum observations for early warning

ETA Rockslide due to seismic trigger

Resulting run-up heights if P_f (slide occurred) = 10⁻³ /yr

Run-up height	Run-up height	Run-up height
≤5 m	> 5m; ≤ 20 m	> 20 m
P = 3 x 10 ⁻⁴ /yr	P = 5 x 10 ⁻⁴ /yr	P = 1 x 10 ⁻⁴ /yr

Åknes: Preliminary threshold values based on experience from other countries

Two major problems with EWS: False alarms and missed events

- One of the most difficult problem in designing an EWS is the specification of proper threshold values for the alarms.
- Avoiding false alarms and missed events. The consequences of false alarms and missed events are often so serious that every possible action must be taken to avoid them.

Emergency plans have been prepared and tested

- Deal with the two situations: (i) high rock avalanche has occurred
- Responsibility, organization and dur
- Where to evacuate from
- Special emergency pla institutions (e.g. hospit

Early Warning Cente

Slope safety: public awareness in Hong Kong

Public Education Initiatives in Hong Kong

"Slope and Home Safety Programme", jointly w/ HK Red Cross - TV and Radio Announcements of Public Interest

Visit elders at squatter huts

Public Education to secondary school students

Webpage.

3D animation on 1972 and 1976 landslides

Don't imprint on the public a false sense of security

Remind the public to stay vigilant about landslide danger

Plan de la conférence

- Management du risque
- Hazard¹, vulnerabilité et appréciation du risque
- Traitement du risque
- Conclusions

Phénomène dangereux

L'estimation et la prédiciton du risque

Prediction ?

Berlin, 1919, "The World in 100 Years" – Predicting the life in the "Colonies"

"The citizens of the wireless age will walk everywhere with their RECEIVER, which will, despite its smallness, be a wonder of miniature mechanics. ... Kings, diplomats, bankers, officials and directors, will make their business and give their signatures where ever they are, on the top of the Himalayas or on a beach..."

Concluding Remarks

- Les analyses du risque (quantitative ou qualitative) sont utiles, surtout pour comparer les alternatives et prendre une décision sur la nécessité et les coûts requis pour réduire les risques.
- Le traitement du risque: réduire les hazards, et/ou réduire la vulnérabilité.
- La vulnerabilité, qui plus en plus intéresse la gouvernance: complexe, appartient à plusieurs disciplines et présente des défis de communication.
- Les méthodes de réduction du risque optimales: un balancemet entre le technique et considerations politiques, sociales, etc; amener l'ingenieur civil, le géoscietifique et les experts des sciences sociales et humaines sur une même longueur d'ondes.

Notre rôle

Hazards naturels et hazards anthropogéniques: apprendre à vivre avec ces hazards est la seule option car le risque ne sera jamais nul. L'on peut vivre avec les hazards, mais il faut savir que le risque est réduit à un niveau accetable ou tout au moins tolérable.

Notre profession doit contribuer à la prévention, de sorte que les phénomènes dangereux (hazards) ne puissent devenir des désastres: les hazards sont le plus souvent incontournables, les désastres ne le sont pas.

Notre rôle

- Un besoin grandissant d'adresser les hazards et prendre des décisions informées sur les moyens de réduire les impacts.
- Un besoin de réorientation: de la réponse par après à la prévention et au traitement du risque, à l'augmen-tation de la résilience et réduction du risque, et au recours à l'expérience pour éviter les erreurs du passé.

Notre profession doit se faire reconnaître comme

"réduisant le risque et protégeant les persones"

