

LES RECONNAISSANCES GÉOTECHNIQUES ET DIAGNOSTICS

Martin van der Meer Fugro Water Services

Les digues fluviales et maritimes

Journee technique commune CFGI-CFMS-CFMR Paris, 27 Janvier 2011

CONTENTS

- Introduction
- Flood Risk Management
- Fugro's REAL[®] pilot Pays-Bas
- Conclusions

Knowledge Transfer Floods NL vs USA

Geo Hazard	Prevention	Spatial Planning	Mitigation & Emergency Management
Floods	EU 🔶		USA
Earthquakes			
Landslides			
Mudflows			
Etc.			
Etc.			

SOLUTIONS FOR SMART FLOOD CONTROL

WWW.FLOODCONTROL2015.COM

CONTENTS

- Introduction
- Flood Risk Management
- Fugro's REAL[®] pilot Pays-Bas
- Conclusions

REAL[®] Rapid Engineering Assessment of Levees

- Systematic consistency in studying the different levee failure mechanisms
- Multi water level analyses, such as high event scenarios
- Quick insight in altered assumptions and insights in physical phenomena

Dike ring 10 'Mastenbroek', NL

Dike ring 10 'Mastenbroek', NL

Dike ring 10 'Mastenbroek', NL

- total dike length 48 km
- decomposed to 70 sections
- consulting safety maps?

- Dike DTM & Geo data
- Subsoil model
- Hydro geological model

- Uplift / heave
- Underseepage / piping
- Slope stability
- (...)

Conditions

Fixed water level

Rising water level

(...)

Data & Subsoil Model

Piping / Specifications

Mechanism & model

L Se	ettings
	Piping / New model NL Slope Stability / simple Overtopping / simple
	Uplift Piping / Bligh Piping / Sellmeijer old

Creep factor Bligh	:	15
Entrance line	:	outer toe
Seepage length margin	:	0 m
Top layer heave factor	:	0,6
Top layer margin	:	0 m
Hydraulic Response	:	70%
Ditch level	:	NAP -1,3m
Traffic load	:	-

Slope Stability / Fixed water level

Uplift & Piping / Rising water level

Piping / Sensitivity Analysis

Worst case

1 / 10,000 water level	+0.3m
Thickness cover layer margin	-0.5m
Creep factor Bligh	21
Response factor groundwater	1.0
Seepage length margin	-5m

Best case

1 / 2,000 water level0Thickness cover layer margin+0.5mCreep factor Bligh15Response factor groundwater0.6Seepage length margin+5m

Piping / Fixed water level / Safety Report

Piping / Fixed water level / Flooded foreland

- Integrated Flood Risk Management (prevention, spatial planning and mitigation) needs solid data
- High quality data sets provide added 'users value' when combined and used for REAL[®] solutions
- See also presentation FLI-MAP & Geo data Rhône river dikes (Sylvain)

Merci

www.fugro.com

Back-up slides

Uplift / Fixed water level / Inspection

Inspection data?

- below / at / above fixed water level?
- worse / same / better dike conditions?

GeODin

Data?

- bla

- bla

Objects / Tree Risk Mapping

3D subsoil model - validation

Geological Map - Top layer

NEMDC-West

Geo Risk Management – Leading countries

Geo Hazard	Prevention	Spatial Planning	Mitigation & Emergency Management
Floods	NL		USA
Earthquakes		USA	
Landslides	s HK	FR	
Mudflows			
Etc.			
Etc.			