

Source : Herrenknecht AG

Objectifs des recherches

- Analyser et comprendre les mécanismes physiques mis en jeu.
 - Régimes idéaux / régimes extrêmes
 - Comportement d'interaction sol machine

• Apporter des réponses concrètes aux questions posées sur chantiers :

- Pertinence des paramètres de contrôle du pilotage
- Aide au dimensionnement de la machine (rôle du bouclier, de la surcoupe,)

• Contribuer au développement et à la validation d'outils de dimensionnement

- Calcul de stabilité du front de taille
- Modélisation numérique du processus de creusement pressurisé des tunnels.

Deux approches complémentaires :

- Expérimentale : Essais sur modèle réduit de laboratoire, Retours de chantiers,
- Théorique : Calcul à la rupture, Méthodes Eléments Finis.

Branque & Berthoz & Wong & Subrin

08 décembre 2010 Journée technique CFMS

3

4

Instrumentation du modèle réduit

• Instrumentation embarquée sur la machine :

- Pressions dans chambre d'abattage
- Couple sur roue de coupe
- Couple sur vis d'extraction
- Effort de poussée horizontale
- Débit d'extraction
- Vitesse d'avancement,...

Arbre de coupe

Vis d'extraction

Branque & Berthoz & Wong & Subrin	08 décembre 2010	Journée technique CFMS	5

extrêmes	Creusement en régimes extré Conclusion	s régimes de creusement t en régimes idéaux	Classification d Creuseme	ental	Introduction spositif expérime	Di

Instrumentation du massif de sol

Matériau modèle et caractéristiques des essais

- Un matériau devant respecter les lois de similitude
- Une similitude partielle privilégiant les notions de rigidité (E*) et de résistance mécanique (c^*, ϕ^*)
- Le choix du sable Hostun S28 sec ou faiblement humide (w<3%)
- Un matériau mis en place dans un état lâche
- Essais en massifs homogènes ou massifs stratifiés 0

	Nom	γ (kN/m ³)	e	Et (MPa)	C' (kPa)	¢' (°)	Ψ (°)	q (kPa)
Massifs	MF11	13.8	0,90	5	0	39	2	0
purement _	MF12	13.7	0,98	5	0	39	2	0
frottants	MF13	13.7	0,98	5	0	39	2	0
Massifs cohérents - frottants	MC2	13.4	1,03	10	2	36	5	0
	MC3	13.4	1,03	10	2	36	5	0
	MC4	13.4	1,04	10	1.5	36	5	0
	MC5	13.25	0,92	10	0.5	36	5	0
	MC6	13.05	1,02	10	0.5	36	5	50
	MC7	13.05	1,00	10	0.5	36	5	50
	MC8	13.05	1,00	10	0.5	36	5	0
_					ก็สายสายสายสายสายสายสายสายสายสายสายสายสายส			

Branque & Berthoz & Wong & Subrin

08 décembre 2010

Journée technique CFMS

6

Introduction Dispositif expérimental

Classification des régimes de creusement Creusement en régimes idéaux

Creusement en régimes extrêmes Conclusion

Classification des régimes de creusement

- **Observations expérimentales:** le comportement en contraintes- déformations du) massif dépend de la nature du régime entretenu
- Régimes de creusement idéaux : régimes qui minimisent les déplacements et déformations au sein du massif.
- **Régimes de creusement extrêmes**: régimes qui génèrent des déformations) importantes au sein du massif, voire conduisent à sa rupture s'ils sont maintenus durablement.

Régime de sur extraction (rupture par effondrement)

Régime de sous extraction (rupture par refoulement)

Contrôle en temps réel du régime entretenu

• Les variations relatives du couple sur la roue de coupe renseignent sur la condition d'invariance de la quantité de matière dans la chambre d'abattage (cond. 2)

Branque & Berthoz & Wong & Subrin

Introduction Dispositif expérimental Classification des régimes de creusement Creusement en régimes idéaux

Journée technique CFMS

Creusement en régimes extrêmes Conclusion

Exemple de déplacements de surface observés

• Une stationnarité des déplacements de surface dans la direction longitudinale.

08 décembre 2010

- Des tassements transversaux de formes gaussiennes conformes à la formulation empirique de Peck (1969)⁴ utilisée dans la pratique.
- Des amplitudes de tassements (de l'ordre du mm) en accord (au facteur d'échelle près) avec les tassements observés in situ (de l'ordre du cm)

¹Peck R.B. (1969), *Deep excavations and tunneling in soft ground*, Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, State of the Art Volume, pp. 225-290.

Synthèse des profils de tassements longitudinaux

- 30 à 50 % des tassements mesurés à 1D à l'arrière du front de taille ont lieu à l'avant du) bouclier (lo pertes de volume au front)
- Profils de tassements longitudinaux en bon accord avec la formule d'Attewell et al. (1982)¹)

Branque & Berthoz & Wong & Subrin

Introduction Dispositif expérimental

///

Classification des régimes de creusement Creusement en régimes idéaux

Creusement en régimes extrêmes Conclusion

Synthèse des profils de tassements longitudinaux

Les tassements à l'avant du front sont d'autant plus faibles que les conditions de stabilité du massif sont bonnes

Une pression frontale élevée limite les tassements à l'avant du front mais peut favoriser leur accentuation à l'arrière du front (zones de sol en traction)

Comportement autour d'une section courante

- Tendance générale observée pour les déplacements radiaux : refoulement à l'avant et convergence à l'arrière du bouclier.
- Une convergence accentuée en clé sous l'action de la gravité
- Mise en évidence de l'influence de la pression frontale
- Correspondance avec le comportement en contraintes.

Introduction	Classification des régimes de creusement	Creusement en régimes extrêmes
Dispositif expérimental	Creusement en régimes idéaux	Conclusion
Comportement autour d'u	ne section courante	

- Tendance générale observée pour les déplacements radiaux : refoulement à l'avant et convergence à l'arrière du bouclier.
- Une convergence accentuée en clé sous l'action de la gravité
- Mise en évidence de l'influence de la pression frontale
- Correspondance avec le comportement en contraintes.

Effets de voûte longitudinaux et transversaux

 Une stationnarité de l'évolution de la contrainte verticale au dessus de la clé du tunnelier.

Pressions frontales limites

- Pressions limites de rupture: bonne correspondance entre les approches théoriques et expérimentales :
 - Massifs de cohésion c ≥ 1.5kPa : Front de taille stable à chambre d'abattage vide 0 et lors de l'application d'une pression de surface.

		Observations expérimentales					Stabilité théorique		
Essai	c (kPa)	q _{ini} (kPa)	Front stable à chambre vide ?	q _{max} (kPa)	Front stable pour q _{max} ?	σ _T ^{cin} (kPa)	Front théoriquement stable à chambre vide ?		
MC2	2,5	0	OUI	0	OUI	-2,7	OUI		
MC3	2,5	0	OUI	50	OUI	-2,7	OUI		
MC4	1,5	0	OUI	50	OUI	-1,4	OUI		
MC5	0,5	0	OUI	45	NON	0	Limite stabilité		
MC7	0,5	50	OUI	85	NON	0	Limite stabilité		
MC8	0,5	0	NON			0	Limite Stabilité		

Massifs de cohésion c' = 0.5kPa : Front de taille en limite de stabilité. 0

Branque & Berthoz & Wong & Subrin

Introduction

08 décembre 2010

Journée technique CFMS

10

Distance du capteur au bouclier / Diamètre tunnelier

Pressions frontales limites

 Pressions limites (et volumes de sols mobilisés) inférieurs expérimentalement que théoriquement

Rupture considérée	c (kPa)	q (kPa)	σ _T ^{exp} (kPa)	σ _T ^{cin} (kPa)
MC1-B1	2,5	0	34	612
MC1-B2	2,5	0	10	612
MC3-B2	2,5	0	21	612
MC5-B1	0,5	0	47	515
MC5-B3	0,5	0	21	515
MC6-B2	0,5	50	70	3854
MC7-B2	0,5	50	76	3854
MC7-B3	0,5	50	43	3854

- <u>Critère retenu pour la pression frontale limite expérimentale :</u> apparition du premier mouvement de refoulement en surface.
- Faible pertinence du modèle théorique: de grands déplacements sont nécessaires pour mobiliser la totalité des conditions cinématiques (irréaliste du point de vue pratique)

- Pertinence des essais sur modèle réduit 1g
 - Bonne compréhension de la phénoménologie
 - Réponses concrètes à des problèmes de la pratique
 - Base de données consistante pour la modélisation théorique du problème

