

Essais de pieux Expériences sur modèles réduits centrifugés

J. Garnier, L. Thorel, N. Chenaf, S. Escofier, G. Rault Division Reconnaissance et Mécanique des Sols LCPC (Nantes)

Journée Technique du CFMS – 27 janvier 2010

La centrifugeuse géotechnique du LCPC

En service depuis 1986 Fréquence d'utilisation : 200 à 220 jours/an

Rayon : 5.5m Masse modèle (max.) : 2 tonnes Accélération (max.) avec 2 tonnes : 100g Conception : *Acutronic/Actidyn - LCPC*

Préparation et caractérisation des massifs de sable

25

Salle et trémie de pluviation automatique

LCPC Laboratoire Central

des Ponts et Chaussées

-Silo Trémie NE PAS STATIONNER SOUS LA TREMIE Rideau de sable

Profils de résistance de pointe normalisée $Q_c = (q_c - \sigma_v')/\sigma_v'$

Résistance mécanique (pénétromètre)

Préparation et caractérisation des massifs d'argile

- Malaxage argile+eau sous dépression (w = $2w_1$)

- Consolidation de type oedométrique en conteneurs circulaires (\$ 900 mm) ou rectangulaires (1200 mm x 800 mm)

CPC Laboratoire Central

des Ponts et Chaussées

- Essais in situ en cours de centrifugation (pénétromètre et scissomètre mobiles)

Malaxeur à dépression

80

100 C_u (kPa)

Conteneurs

6 900 mm

Simulateur de séismes

CPC Laboratoire Central

des Ponts et Chaussées

Conditions de similitude pour les essais de pieux

Technical Committee TC2 (Physical modelling in geotechnics)

IJPMG - International Journal of Physical Modelling in Geotechnics (2007), Vol.7, N°3 pp. 01-23

CATALOGUE OF SCALING LAWS AND SIMILITUDE QUESTIONS IN GEOTECHNICAL CENTRIFUGE MODELLING

J. GARNIER, C. GAUDIN, S.M. SPRINGMAN, P.J. CULLIGAN, D. GOODINGS, D. KONIG, B. KUTTER, R. PHILLIPS, M.F. RANDOLPH, L. THOREL

A-Fundamental laws of statics, time and rate scaling factors (C. Gaudin, J. Garnier)	B-Grain size effects on soil-structure interaction (D. König, J. Garnier)	C-Grain size effects on interfaces and shear band patterns (B. Kutter, D. König,)	D-Size effects derived from continuous media mechanics (C. Gaudin, J. Garnier)	E-Density and stress distribution in centrifuge models (J. Garnier)
F-In-flight in-situ tests (M.F. Randolph, J. Garnier)	G-Fluid flow in saturated centrifuge samples (D. Goodings)	H-Unsaturated conditions (D. König, J. Garnier)	I-Dynamic conditions (B. Kutter, S.M. Springman)	J-Aqueous phase transport in saturated soils (P.J. Culligan)
K-Non aqueous phase transport in soils and fractures (P.J. Culligan)	L-Heat transfer (P.J. Culligan) Frost, Ice (R. Phillips)	M-Erosion, sedimentation (D. Goodings)	N-Current propagation, electro-osmosis (L. Thorel)	Other topics to come ?

Cas du frottement latéral (cisaillement d'interface)

Effet du rapport B/d₅₀ sur le frottement latéral maximum τ_p

Main topic	Similitude problem	Known data and results	Still open questions	Basic references
C – Grain size effects on interfaces and shear band paterns	C1 – Grain size effects on frictional interface	In pullout loading tests, limited effects on peak shear strength are observed if the diameter of the model pile B satisfies: <i>B/d50 > 50(2) or 100(1)</i>	Scaling law on displacement at peak strength is not known	(1) Foray et al. (1998) Garnier & König (1998) (2) Fioravante (2002)

Interfaces lisses $R_n/d_{50} < 0.02$

Cisaillement dans le sol Peu d'effet de la taille des grains

Interfaces rugueuses $R_n/d_{50} > 1$

Cisaillement à l'interface

Effet sensible pour $B/d_{50} < 50$ ou 100

Garnier et al. (2007)

Niveau international Contrats Chevron, Exxon, Exxon-Mobil, Total Niveau européen **Programmes QUAKER, SERIES** Niveau national Programmes PN FOREVER, ANR et PN SOLCYP, R2GC Niveau LCPC OR Ouvrages en sites sismiques, Fondations et amélioration des sols Principaux contributeurs Doctorants LCPC : Bouafia, Mezazigh, Remaud, Rosquoët, Chenaf, Rakotonindriana Autres doctorants : Rezende, Balachowski, Bonab, Tsua, Khemakhem Equipe technique actuelle : Audrain, Favraud, Gaudicheau, Neel

Deux composantes de l'effet de groupe (p-multiplier P_m) :

- Interaction mécanique pieu-sol-pieu (pour tous types de pieux)
- Modification des caractéristiques du sol due à la mise en place des pieux (seulement pour les pieux "refoulant")

Etudes expérimentales des effets de groupe

Prototype : $D = 12 \text{ m}, B = 0.72 \text{ m}, EI = 474 \text{ MN.m}^2$ Modèles (échelle 1/40) instrumentés de 20 paires de jauges Paramètres étudiés : Nombre de pieux, arrangement, espacement, mode de mise en place, type de chargement....

Groupe de 3 pieux Remaud et al. (1998), Remaud (1999)

Effets de groupe dans le cas de deux pieux

CPC Laboratoire Central

des Ponts et Chaussées

Détermination expérimentale des courbes de réaction *P-y* à partir des profils de moment

 $\ M$

k

CPC Laboratoire Central

des Ponts et Chaussées

Exemple de courbes p-y statiques obtenues pour un pieu isolé

Massif de sable de Fontainebleau $I_D = 86\%$

Effets de groupe sur les courbes *P-y* dans le cas de deux pieux

CPC Laboratoire Central

des Ponts et Chaussées

Construction des courbes p-y pour les pieux en groupe

$$p_{Group} = P_m \times p_{Single}$$

Valeur des coefficients Pm en fonction de la distance relative entre pieux s/B

Synthèse FOREVER (2004)

Pieux sous charges latérales cycliques

Charges cycliques caractérisées par :

- Nombre de cycles n
- Charge maximale appliquée F
- Amplitude de la variation DF

Exemple de courbe de chargement cyclique (F = 960 kN, DF = 480 kN)

Domaine des séquences cycliques étudiées

Charge cyclique maximale : 960 kN (1/3 de la résistance latérale ultime) Pieu en conditions de service

Confirmation de la loi logarithmique de Rosquoët (2004) jusqu'à 500 cycles Apparition d'une seconde loi logarithmique entre 500 et 25000 cycles

Laboratoire Central

des Ponts et Chaussées

(Rakotonindrian, 2009)

Effet des cycles sur les courbes de réaction P-y

Exemples de courbes de réaction cycliques obtenues dans le cas F = 960 kN et DF = 480 kN

-Dégradation régulière de la réaction latérale dans les couches de surface -Pas d'effet significatif à plus grandes profondeurs

Réaction P du sol en fonction du déplacement y du pieu observés sous la charge latérale maximale (Exemple de cycles avec F=960 kN et DF= 480 kN)

Laboratoire Central

des Ponts et Chaussées

A faible profondeur, les cycles réduisent la réaction latérale du sol (le point de rotation est situé à environ 5m de profondeur)

A plus fortes profondeurs, les courbes *P-y* ne sont pas affectées par les cycles

Transfert de charge en profondeur

Rosquoët et al (2007)

Synthèse des résultats sur les courbes p-y cycliques

Détermination expérimentale des courbes p-y pour un nombre donné de cycles

- Nécessite la réalisation d'essais à différents niveaux de chargement
- Montre que les courbes p-y cycliques n'évoluent plus au-delà de 30000 cycles

(Rakotonindriana, 2009)

Chargement latéral dynamique

Laboratoire Central

des Ponts et Chaussées

1 - Etude de l'effet du nombre d'impacts, de la masse du chevêtre, de la méthode de mise en place du pieu

- 2 Etude du couplage des interactions inertielle et cinématique
 - Pieu prototype pile: fiche 12m, diamètre 0.72m
 - Modèles réduits 1/40 (essais sous 40G)
 - Impact latéral à 2,2 m au dessus du sol
 - Mesure en tête: accélération, déplacement, force
 - 20 paires de jauges

Bonab (2002); Bonab et al. (2003), Chenaf (2007)

Marteau électromagnétique

CPC Laboratoire Central

des Ponts et Chaussées

Performance du dispositif

Succession d'impacts sans arrêt de la centrifugeuse
Ajustement de l'intensité de l'impact

Exemples de courbes de réaction dynamiques

Pile displacement y (mm)

Profils des moments fléchissants

Inertielle pure (Chevêtre, impact en tête)

Cinématique pure (Sans chevêtre, séisme)

Interactions couplées (Chevêtre, séisme)

Cumul des deux effets → Interactions en phase

Comparaison des boucles p-y

Effet inertiel prédominant en surface - Effet cinématique domine en profondeur

Chenaf (2007), Chenaf & Chazelas (2008)

Résistance des pieux au flambement

Première phase :

e : Validation de l'approche expérimentale par des essais de flambement à l'air (sans sol)

Barrettes aluminium | Section 10mm ou 20mm x 2mm, Longueur 300 mm

Liaisons en tête et en pied: Articulée (A) ou encastrée (E)

Bonne concordance avec les valeurs théoriques (Euler) $Fcr = (p^2 Eplp)/L^2$

Essai	Exp. (kN)	Théor. (kN)	Ecart (%)
AA10	0.057	0.051	12
AA20	0.106	0.101	5
EA10	0.109	0.104	5
EA20	0.206	0.208	1
EE10	0.202	0.203	0.5
EE20	0.381	0.406	6

Modèles (1/50ème) : Barrettes rectangulaires en aluminiumPrototypes :Largeur B = 0.5m et 1m, Epaisseur E = 0.1m, Longueur L = 15mSols d'essais :Sable de Fontainebleau (24 essais) et argile molle (15 essais)

Type d'essai	Fcr Argile (MN)	Fcr Sable (MN)	(Fcr sable)/ (Fcr argile)
AA10	4.3	8.7	2
AA20	7.9	16.1	2
EA10	3.7	9.2	2.5
EA20	8.1	17.9	2.2
EE10	-	9.9	-
EE20	-	20.9	-

CPC Laboratoire Central des Ponts et Chaussées

Essai de flambement dans le sol (50g)

- Vérifications à faire dans le cas de micropieux en acier (B < 100mm)
- Les abaques de Mandel ne sont applicables qu'aux sols homogènes (Es cst)
 - Choisir pour Es la valeur que prend le module aux profondeurs suivantes:
 - 3,5 à 4 I_o pour un sable mi-dense (Es 50 à 75 Mpa)

4,5 à 6 I_o pour une argile molle (Es 3 à 5 Mpa)

 $I_0 = (4\text{Eplp/Es})^{\frac{1}{4}}$

• Le logiciel GOUFLA fournit une assez bonne estimation de la force critique

Comparaisons GOULA-Essais (massif discrétisé en couches homogènes)

	Argile	Argile	Sable
Fc (MN)	EA	AA	EA
ESSAIS	4,4	2,8	9,9
GOUFLA	4,7	3,0	10,1

Synthèse FOREVER (2004)

Effet de la densité du réseau de micropieux sur la portance

Objectifs : Détermination de l'effet du nombre de micropieux Détermination du réseau équivalent au bloc monolithique

- Réseaux de 9, 16, 25 et 36 pieux et bloc monolithique
- Pieux prototypes : Fiche 5 m, Diamètre 120 mm
- Sable de Fontainebleau ($\gamma_d = 15 \text{ kN/m}^3$)
- Chevêtre de liaison : Carré 3.2 m x 3.2 m sans contact avec le sol

Laboratoire Central

des Ponts et Chaussées

Nombre de pieuxEntraxe (B) $3 \times 3 = 9$ 10 $4 \times 4 = 16$ 6.5 $5 \times 5 = 25$ 5 $6 \times 6 = 36$ 4

Conteneur après essais

Effet de la densité du réseau de micropieux sur la portance

Courbes de chargement vertical

CPC Laboratoire Central

des Ponts et Chaussées

Effet du nombre de pieux sur la portance

Charge totale pour un tassement de 4 cm (B/3)

Réseaux équivalent au bloc monolithique :

7 x 7 pieux soit un entraxe de 40 cm (3.3B)

Synthèse FOREVER (2004)

Réseaux de micropieux : Données obtenues par Lizzi (1979)

Pieux Lizzi | Diamètre B = 10 mm (barres d'acier Φ 8mm enduites de sable) Longueur D = 1 m (D/B = 100)

Sol : Sable tamisé « incohérent », densité non précisée

Charges limites et coefficient d'efficacité du pieu isolé, du groupe de 18 pieux verticaux et du réseau de 18 pieux inclinés (Lizzi, 1979)

	Pieu vertical isolé x 18	Groupe de 18 pieux verticaux	Réseaux de 18 pieux
Charge limite	14.4 kN	24.2 kN	32 kN
Coefficient d'efficacité	1	1.68	2.22

Résultats des essais sur modèles de réseaux

Courbes de chargement (charge - Tassement)

Laboratoire Central

des Ponts et Chaussées

Comparaison avec les données Lizzi

Coefficient d'efficacité Ce	Groupe de 18 pieux verticaux	Réseaux de 18 pieux
Essais Lizzi	1.68	2.22
Essais LCPC	1.61 & 1.56	1.31

« Il s'agit de recherches expérimentales essentiellement qualitatives » Lizzi, 1979

Comparaison groupe et réseau

Autres réseaux étudiés

Pieux hélicoïdaux – Mise en place et résistance

Objectifs des essais sur modèles :

Laboratoire Central

des Ponts et Chaussées

-Etude de l'effet de la compacité du sol, du nombre et de la position des hélices

-Validation du modèle théorique liant la résistance à l'arrachement Q_u au couple appliqué lors de la mise en place T

$$Q_u = \frac{2T_h}{d_c.tg(\theta + \delta_r)} + \frac{2T_s}{d}$$

Nécessité de développer un dispositif permettant la mise en place (vissage) et le chargement sans arrêt de la centrifugeuse

Tsuha (2007)

Installation et chargement de pieux hélicoïdaux

Dispositif de mise en place asservi (22g)

Laboratoire Central

des Ponts et Chaussées

Pieux testés (prototypes) Diamètre du fût : 64, 97 et 132 mm Diamètre des hélices : 214, 325 et 440 mm Nombre d'hélices : 1 à 3 Profondeur : 2,9m à 6,2m

Sables : γ_d =15,46 kN/m³ (I_D=56%, ϕ =31°) γ_d =16,30 kN/m³ (I_D=85%, ϕ =41°)

Comparaison entre résistance à l'arrachement mesurée et calculée

Tsuha (2007)

LCPC Laboratoire Central des Ponts et Chaussées Application aux fondations d'ouvrages offshore

Exxon	Caissons H=30 m D=15 m charges vert. statiques&cycliques
Exxon	Caisson à succion - Comparaison essai sur site NGI
BOS-Geodia	Plancher de stabilité à effet de succion
BOS-Geodia	Groupe de 9 pieux et fondations mixtes
Ifremer-Geodia	Caisson à succion sous charges statiques et cycliques
Ifremer-Geodia	Groupes de 3 pieux pour tour souple
Chevron	Pieux d'ancrage : plate-forme Genesis (L=76 m, B=2,44 m)
Ifremer-Sage-Geodia	Caissons à effet de succion
Exxon Mobil	Caissons à effet de succion (H=30m, D=6m)
Total	Caissons à effet de succion

Clauses de confidentialité !

Différents systèmes de fondations off-shore

Objectifs des essais

- -Détermination des profils de moments de flexion (pieux à inertie variable)
- -Validation du découplage (composante verticale composante latérale)
- -Comportement sous séquences cycliques (tempêtes)
- -Détermination expérimentale des courbes P-y

Laboratoire Central

des Ponts et Chaussées

-Relation entre Pu et résistance au cisaillement non drainée du sol

Dispositif expérimental (Plate-forme Chevron Genesis)

Pieux modèles Echelles 1/100 et 1/74

Load seq.	Cycles	Qmin (MN)	Qmax (MN)
1	Monotonic	loading from	0 to 2,8 MN
2	1800 cycles	1,7 MN	3,9 MN
3	1500 cycles	3,6 MN	7,6 MN
4	1000 cycles	3,6 MN	8,4 MN
5	500 cycles	3,4 MN	9,2 MN
6	500 cycles	5,6 MN	16,8 MN
7	Monotonic failu	loading from are and unloa	11,6 MN to

LCPC Laboratoire Central

des Ponts et Chaussées

Comportement sous charge monotone

Test 1	Vertical monotonic
Test 2	Horizontal monotonic
Test 3	Inclined monotonic
Test 4	Inclined cyclic
Test 5	Inclined monotonic
Test 5 Test 6	Inclined monotonic Inclined cyclic
Test 5 Test 6 Test 7	Inclined monotonic Inclined cyclic Inclined cyclic

Chargement statique final (horizontal ou incliné), réalisé après les séquences cycliques

Exemple de profils de moment de flexion

Profils des moments dans le pieu sous différentes charges latérales (Test 2)

Test 2 (Chargement latéral)

- Lissage des données par Spline quintique
- -Double dérivation (détermination de P) et double intégration (détermination de y)
- Construction des courbes de réaction P-y à différentes profondeurs

Courbes *P-y* et résistance latérale ultime

des Ponts et Chaussées

CPC Laboratoire Central

Caissons à succion (ExxonMobil)

Important programme d'essais sur modèles centrifugés

19 massifs argileux, 28 essais de chargement

Etude de la mise en place des pieux (avec ou sans succion)

Réponse aux chargements monotones et cycliques (effets des courants, tempêtes)

Pile installation technique

1-Pieu suspendu sous la chaîne Tête ouverte Pieu guidé

Technique de mise en place des pieux

- 1-Pieu suspendu sous la chaîne Tête ouverte sur l'extérieur Pieu guidé sur les premiers mètres
- 2-Première phase de mise en place Connexion de la tête au dispositif de succion

Pile installation technique

- 1-Pieu suspendu sous la chaîne Tête ouverte Pieu guidé
- 2-Première phase de mise en place sous poids propre puis connexion de la tête au dispositif de succion
- 3-Application de la succion (déplacement du réservoir de succion

Pile installation technique

- 1-Pieu suspendu sous la chaîne Tête ouverte sur l'extérieur Pieu guidé sur les premiers mètres
- 2-Première phase de mise en place sous poids propre puis connexion de la tête au dispositif de succion
- 3-Application de la succion (déplacement du réservoir de succion)
- 4-Poursuite de la mise en place avec accroissement contrôlé continu de la succion
- 5-Fin de l'installation et fermeture de la tête du caisson

LCPC Laboratoire Central

des Ponts et Chaussées

Essais de chargement

Laboratoire Central

des Ponts et Chaussées

Servo-vérin longue course conçu spécialement

- Asservissement en force
- Asservissement en déplacement

Chargement après mise en place du pieu sans arrêt de la centrifugeuse

- Monotonique non drainé (avec ou sans succion)
- Charge maintenue constante (8 à 12 mois)
- Cycles dus aux courants (40 jours, 40 cycles)
- Tempête (28 heures, 728 cycles)

Exemple de séquences de chargement

1 Monotonic loading

Laboratoire Central

des Ponts et Chaussées

- 2 Loop current sequence + Monotonic loading
- 3 Sustained load (35 min ~ 8 months)
- 4 Monotonic loading
- 5 Hurricane n°1 + Monotonic loading
- 6 Sustained load (52 min ~ one year)

- 7 Monotonic loading
- 8 Hurricane n°2 + Monotonic loading
- 9 Sustained load (52 min ~ one year)
- 10 Monotonic loading
- 11 Hurricane n°3
- 12 Monotonic loading to failure

(Monotonic loadings are displacement controlled, other sequences are load controlled)

Diagramme de stabilité des caissons

Cyclic ratio vs. static offset

Abaque donnant le nombre limite de cycles avant rupture

Essais de pieux sur modèles réduits centrifugés

Conclusions provisoires

Possibilités.....et.... limites (actuelles !)

 Méthode expérimentale bien adaptée aux	 Application à un projet spécifique fonction
études paramétriques et à la validation de	des possibilités de modéliser correctement le
modèles théoriques ou numériques	massif de sol
 Progrès constants dans le développement des techniques expérimentales, de l'instrumentation et du traitement d'images De plus en plus d'interventions complexes en vol (robots embarqués) 	 Développement en cours de simulateurs de séismes 2D, de chambres atmosphériques Parc de centrifugeuses stable en Europe, en explosion en Asie
 Maîtrise et connaissance précise des caractéristiques physiques et mécaniques des massifs de sol (sables et argiles) 	 Progrès récents sur les sols non saturés Recherche en cours pour les sols « intermédiaires »
Conditions de similitudes connues et souvent	 Deux facteurs d'échelle différents pour le
faciles à satisfaire	temps (diffusion et dynamique)