Dr.-Ing. Stephan MatthiesenProject ManagementDipl.-Ing. (FH) Meik SchackniesDesign DepartmentParis October 2009

Overview Part I

- Product range
- Components of a wind turbine

Overview Part II

- Load assumptions for wind turbines
- Loads and load cases
- Rocking spring stiffness

330 kW 44 – 50 m

Rated power: Hub height:

900 kW 45 m / 55 m

Rated power: Hub height:

800 kW 50 – 76 m

E53

E70

Rated power: Hub height:

800 kW 73 m Rated power: Hub height: 2.300 kW 64 – 113 m

Rated power: Hub height: 2.000 kW 78 – 138 m

E126

Highest power producing WEC worldwide:

Rated power:	6.000 kW
Rotor diameter:	127 m
Hub height:	135 m
Power production:	20 Mio. kWh p.a.

- Produces electricity for more than 5000 households
- 35% more yield compared to predecessor E-112
- Two-segment rotor blade facilitates transport

-> blades

- -> nacelle with generator and hub
- -> tower (steel / concrete)

- -> electrical installation and grid connection
- -> foundation
- -> with piles or soil improvement (if necessary)

<u>-> concrete</u> tower

-> foundation with basket

-> foundation with section

-> foundation for concrete tower

Overview Part I

- Product range
- Components of a wind turbine

<u>Overview</u> Part II

- Design situations for wind turbines
- Loads and load cases
- Rocking spring stiffness

Design situations

Environmental conditions

• Wind, Temperature, Ice, Earthquake

Operational conditions

- Normal operation and power production
- Start up, shut down, idling, standstill

Temporary conditions

- Transportation of components
- Installation and assembling
- Maintenance and repair

Design load cases

- Normal operation and normal external conditions
- Normal operation and extreme external conditions
 - extreme wind speed
 - extreme direction change
 - extreme dynamic wind shear
- Fault situations and appropriate external conditions
 - Control system fault
 - Electrical fault
 - Yaw system fault
- Transportation, installation and maintenance situations

Load cases for operational and environmental conditions defined in EN 61400-1

Design situation 1) Power production	DLC	Wind condition*		Other conditions	Type of analysis	Partial safety factors
		NTM	Vhub = Vr or Vout		U	N
	1.2	NTM	Vin < Vhub < Vout		F	•
	1.3	ECD	Vhub = Vr		υ	N
	1.4	NWP	Vhub = Vr or Voul	External electrical fault	U	N
	1.5	EOG1	$V_{hub} = V_r \text{ or } V_{out}$	Loss of electrical connection	U	N
	1.6	EOG ₅₀	Vhub = Vr or Vout		U	N
	1.7	EWS	$V_{\rm hub} = V_{\rm r} {\rm or} V_{\rm out}$		U	N
	1.8	EDC ₅₀	Vnub = V, or Vout		U	N
-	1.9	ECG	Vhub = Vr		U	N
2) Power production plus occurrence of fault	2.1	NWP	$V_{\rm hub} = V_{\rm r} {\rm or} V_{\rm out}$	Control system fault	U	N
	2.2	NWP	$V_{hub} = V_r \text{ or } V_{out}$	Protection system or preceding internal electrical fault	U	A
	2.3	NTM	Vin < Vhub < Vout	Control or protection	F	•

Table 2 - Design load cases

Due to the nature of wind the loads are high variable !

(transient)

- (steady) • mean wind, gravity loads
- turbulence, earthquake (stochastic)
- unbalanced mass, rotor frequency (periodic)
- start up / shut down, gusts

[Hau 2005]

Different aspects for structural design

- 1. Extreme Loads (Ultimate Limit State)
- 2. Fatigue Loads (Ultimate Limit State)
- 3. Stiffness of components (ULS and SLS)
 - Vibrations (resonance effects)
 - Deflections (distance between blade and tower)

Vibrations - Rocking spring stiffness k_{ø.dvn}

To avoid resonance we have to consider the stiffness of the components but also the soilstructure interaction. The eigenfrequency of the system *machine - tower – foundation - soil* shall not be in the range of the variable frequencies. To ensure this requirement a minimum stiffness of foundation and soil is necessary.

Important design parameter for WEC:

- Rotational frequency of rotor (1P)
- Rotational frequency of one blade (3P)
- Eigenfrequencies of the whole system (1. EF / 2. EF)

Eigenmodes of the tower structure

Merci pour votre attention

