Les modules et leurs applications au dimensionnement et contrôle de qualité des structures de chaussée et des voies ferrées

António Gomes Correia

Université de Minho, Portuga

Journée d'hommage au Professeur Jean BIAREZ, 12 Mars 2008

CFMS, 08-03-12

A. Gomes Correia (agc@civil.uminho.pt) University of Minho; Campus de Azurém, Guimarães; Portugal

LECTURE OUTLINE

□ INTRODUCTION **DESIGN PROCESS DLABORATORY TECHNOLOGIES MODULI FROM LABORATORY IFIELD TECHNOLOGIES MODULI FROM FIELD**

DESIGN PROCESS

DIFFICULTY: Identification of model parameters

IN SITU STRAIN MEASUREMENTS IN FLEXIBLE PAVEMENT STRUCTURES *FWD* – 65 *kN*

STRAINS DUE TO MOVING LOADS

$\varepsilon^{t} = \varepsilon^{p} + \varepsilon^{e}$

The increment of residual or permanent strain over 1 cycle is much smaller than the elastic strain (unload-reload strain)

CYCLIC LOAD TRIAXIAL TEST FOR UGM

(EN 13286-7)

EVALUATION OF QUASI ELASTIC BEHAVIOUR

√ Cyclic conditioning (20 000 cycles)
√ Series of short unload-reload cycles
(100 cycles/stress level)

EVALUATION OF RESISTANCE TO PERMANENT DEFORMATION

- ✓ Single stage procedure (80 000 cycles)
- **√** Multi-stage procedure
- (10 000 cycles/stress level)

Ranking materials

□ Parameters for modelling and design

LABORATORY TECHNLOGIES Strains from 0,0001% are necessary

ON AND OF SAMPLE MEASUREMENTS

CYCLIC TRIAXIAL TEST (UMinho)

CYCLIC TRIAXIAL TEST Typical results of strain measurements

MODULI FROM LABORATORY

NON LINEAR BEHAVIOUR **DEFINITIONS OF MODULI**

lg ε

QUASI-ELASTIC PARAMETERS FOR CONSTITUTIVE LAWS OF SOILS

Calculation of constitutive relations for a continuum based on the properties of a discontinuum composed of spheres

Biarez

SMALL STRAIN MODULUS FOR CLAYEY SOILS

(Biarez et al., 2003)

IMPORTANCE OF STRAIN LEVEL IN SECANT MODULUS (Gomes Correia, 2000 (data from Loach, 1987))

QUASI-ELASTIC PARAMETERS FOR CONSTITUTIVE LAWS OF UGM

TRIAXIAL TEST RESULTS MODELLING

k-θ model CCP **NON-LINEAR MODELS** $M_{r} = k_{1} p_{a} \left(\frac{3p}{p_{a}}\right)^{k_{2}}$

v = 0.35

 $p = \frac{\sigma_1 + 2x\sigma_3}{3}$ $q = \sigma_1 - \sigma_3$

 $\varepsilon_{v} = \varepsilon_{1} + 2x\varepsilon_{3}$ $\varepsilon_{q} = \frac{2}{3}(\varepsilon_{1} - \varepsilon_{3})$

Boyce model VCP

$$\varepsilon_{v} = \frac{1}{K_{a}} p_{a}^{1-n} p^{n} \left(1 - \beta \left(\frac{q}{p} \right)^{2} \right)$$

$$K = \frac{\left(\frac{p}{p_a}\right)^{1-n}}{\frac{1}{K_a} - \frac{\beta}{K_a} \left(\frac{q}{p}\right)^2}$$

$$G = \frac{\left(\frac{p}{p_a}\right)^{1-n}}{\left(\frac{1}{G_a}\right)}$$

RECENT FINDINGS - UGM

MATERIALS & PRECISE LARGE TRIAXIAL TESTS

Material	D ₅₀ (mm)			Modified Proctor		
		U _c		w (%)	^Ƴ d (Mg/m³	G _s
0/31.5	8.5	53		5.9	2.310	2.71
0/12.5	3.5	28		6.2	2.125	2.71
Material	Compaction conditions					
	w ₀ (%)		γ _{d0} (Mg/m³)		e ₀	
0/31.5	3.9			2.193		0.236
0/12.5	4.1			2.216		0.223

23x23x57 cm

STRESS-DEPENDENCY OF YOUNG'S MODULUS AT SMALL STRAINS, E_v : a function of σ_v only

(Gomes Correia et al., 2005)

TYPICAL RESULTS OF CYCLIC TRIAXIAL TEST- CCP Un.-Rel. Strains – Poisson ratio

"S" SHAPED STRESS-STRAIN CURVE UNDER TRIAXIAL COMPRESSION AFTER CYCLIC PRE-STRAINING (Gomes Correia et al., 2005)

Stress-strain behaviour under cyclic loading, showing:

- large inelastic strains & a typical degradation of the modulus with strain during the first cycle; and
- S-shaped S-S curve after cyclic prestraining

Peculiar but natural trends of the tangent and secant moduli as a function of strain level for a very dense compacted after pre-straining of 21.000 cycles of a constant cyclic deviator stress of 230 kPa

FIELD TECHNOLOGIES

Spectral-Analysis-of-Surface-Waves (SASW)

(Nazarian, 2005)

Receiver A

Source

Seismic Portable Device

J PCC-AC Modulus in E:\BackupPanasonic\TAM 20 Sections\6 in Base PSPA Temp

<u>?</u>×

("Spot" tests) : Stiffness (LDW)

Dynamic plate loading tests – **increase:** simpler and faster than static PLT Different equipments: size, measurement principle, parameters determined, ...

Different tests results (Flemming & Rogers, 1995, Gomes Correia et al, 2004)

Soil stiffness gauge (Edil & Sawangsuriya, 2005)

CONTINOUS COMPACTION CONTROL (Brandl, 2001; Adam, 2004)

Continuous Compaction Control (CCC)

BTM 05 control system with accelerometers, micro

sor, console and printe

BCM 03 documentation syst with screen, memory card, reader and BCMWIN softwa

CCC-systems

Compactometer CMV is based on the evaluation of the acceleration in the *frequency domain*

Terrameter OMEGA is based on the evaluation of the energy transmitted to the soil in the time domain

CONTINOUS COMPACTION CONTROL (LPC; Quibel, 1998)

Wheel 1 m, 200 mm wide equipped with a vibratory loading system and instrumented with accelerometers.

Continuous determination of stiffness (3 km/h)

MODULI FROM FIELD

MODULI FROM FIELD TESTS

(Jamiolkowski et al., 1988, 2003)

 $\mathbf{G}_{0,}\mathbf{E}_{0}(\varepsilon < \varepsilon^{l})$

INDEPENDANT FROM: Strain level Stress history

DEPENDANT ON: Relative density Ambient stress Compressibility Aging & Fabric

$$G_{sec}, E_{sec} (\epsilon_{sec} > \epsilon^{I})$$

DEPENDANT ON:

Strain level Stress history Relative density Ambient stress Compressibility Aging & Fabric Strain rate

$$G_0 = S \cdot p_a^{1-n} \cdot F(e) \cdot p'^n$$

CORRELATIONS WITH G_0 , E_0 are more reliable than with G_{sec} , E_{sec}

SERVICEABILITY STIFFNESS

Factoring G_0 or E_0

where γ is shear strain; $\gamma_{0,7}$ is the shear strain for a stiffness degradation factor of *G/G0*=0.7 and *a* is a constant (a \approx 0,385, for the database used)

Fahey & Carter, 1993; Mayne, 2001

$$\frac{E}{E_0} = 1 - f \left(\frac{q}{q_{ult}}\right)^g$$

 $\gamma_{0.7}(\%)$

Gomes Correia et al., 2001

PMT – PLT - TXSimulation ROUTINE & ADVANCED ANALYSIS (HSM – PLAXIS) (Gomes Correia et al., 2004)

CONCLUSION

« Pensé du Professeur Jean Biarez »

