

Mise aux normes de la STEP de Vongy (74)

Construction d'un bassin d'orage en site sensible O. Pal / F. Durand

Mise aux normes de la station d'épuration de Thonon (74), site de Vongy Réalisation du bassin de Morcy

Les intervenants

Marché conception – construction de mise aux normes de la STEP de Thonon

Maître d'Ouvrage : SERTE

Assistant M.O.:
SOGREAH

Groupement d'entreprises titulaire

Maîtrise d'œuvre : Cabinet MERLIN

Process : PASSAVANT IMPIANTI (Mandataire)

PASSAVANT ROEDIGER

Génie civil : RAZEL / EIFFAGE TP

Architecte Atelier AXE

• Fours – Incinération : FMI

Principaux partenaires G.C.

Etudes génie civil

Etudes géotechniques
BET EIFFAGE TRAVAUX PUBLICS / FUGRO

Armatures (1200 T) Fourniture MECSIDER

Pose PROFERRAILLAGE

Bétons (18 000 m3)
CHABLAIS BETON

Terrassements/Démolition : GROPPI

• Etanchéité CH ETANCHEITE

Fondations spéciales (Morcy)
KELLER FONDATIONS SPECIALES

Réseaux / voiries
APPIA SAVOIE LEMAN

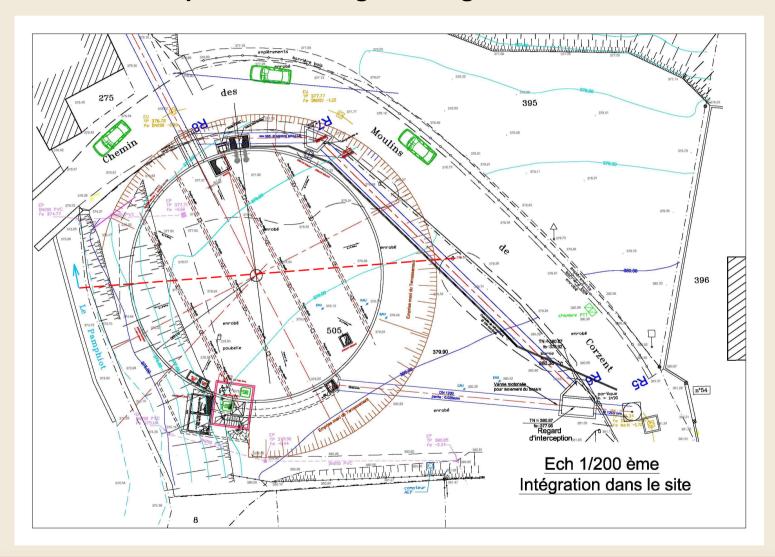
Les caractéristiques de l'ouvrage

Bassin circulaire d'une capacité de 2000 m³

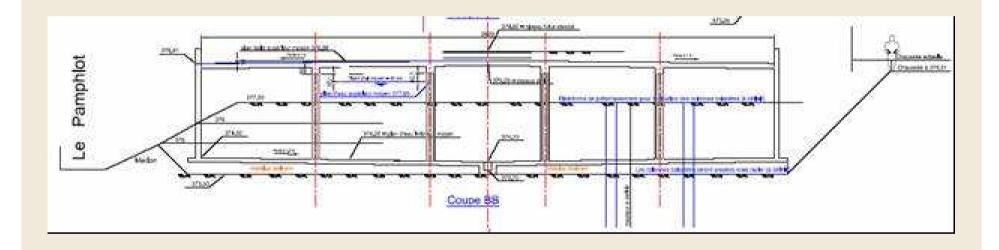
Diamètre: 28 m

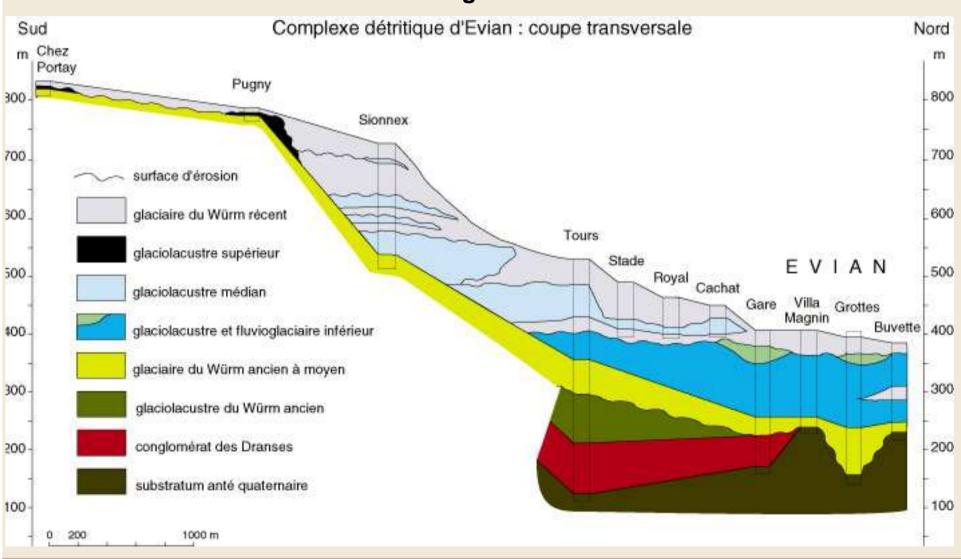
Hauteur moyenne: 4 m

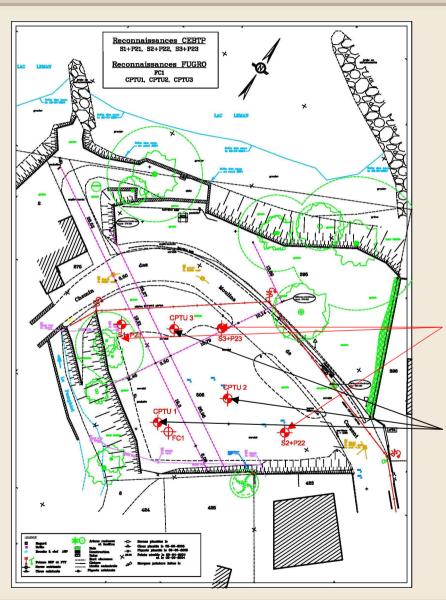
Cote radier: 374 NGF


 $\hat{\mathbf{U}}$

Ouvrage modeste mais situé en site très sensible !


Vue en plan de l'ouvrage et intégration dans le site


Vue en coupe du bassin



Géologie locale

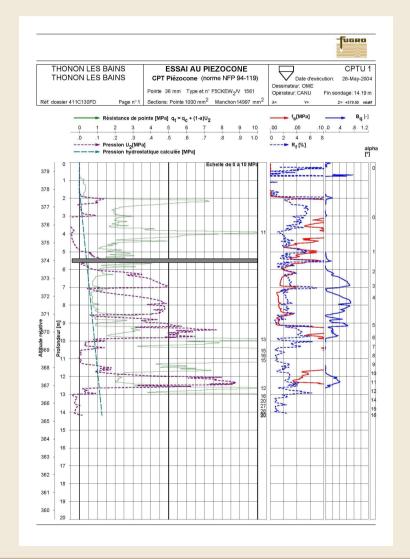
Reconnaissances géotechniques

Campagne initiale SIMECSOL (07/1999)

- Campagne pressiométrique x1
- 1 piézomètre

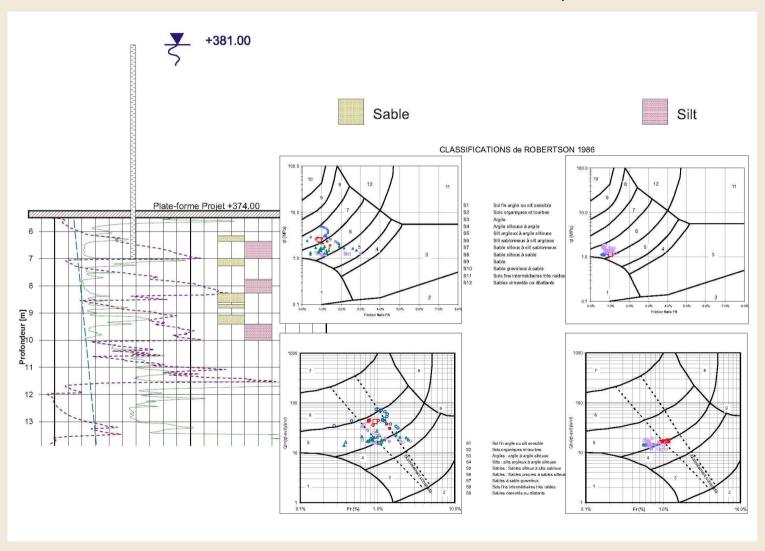
Campagne CEBTP (01/2002)

Réalisation de piézomètres sélectifs


Campagne FUGRO (06/2004)

- 3 piézocônes
- 1 sondage carotté

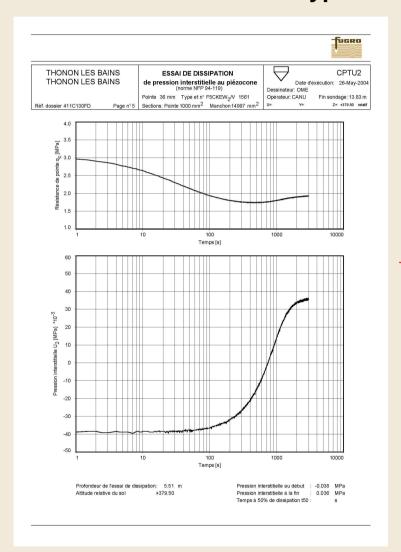
Identification des matériaux au droit du bassin, cas CPTU1 et CPTU2

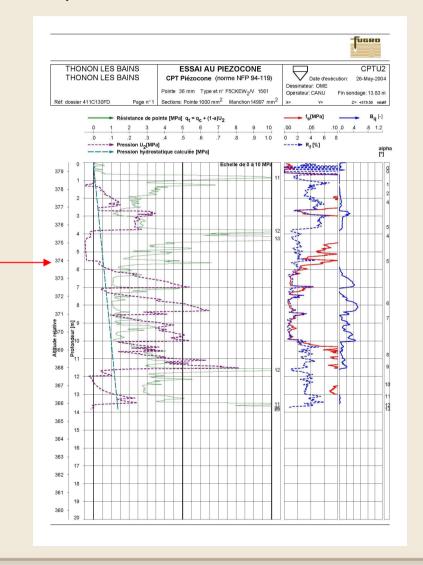


Identification des matériaux au droit du bassin, cas du CPTU2

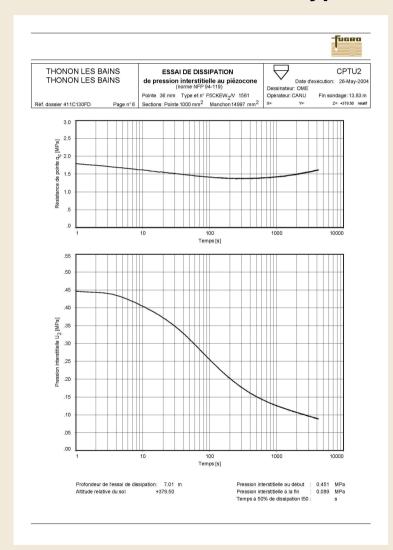
Lithologie d'après corrélation abaques de Robertson

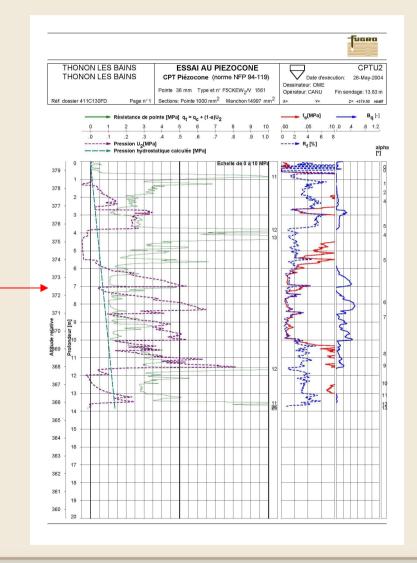
Entitologic a apres correlation abaques de Nobeltson											
CPT	Profondeur	Cote NGF	Couche	q_c/F_R	Type de matériau						
	2.00 m / 4.00 m	377.50 / 375.50	①	2 MPa / 5%	Argile silteuse						
	4.00 m / 6.00 m	375.50 / 373.50	2	2 MPa / 3%	Silt argileux						
CPTU1	6.00 m / 9.00 m	373.50 / 370.50	3	1 MPa / 2.5%	Sable silteux sensible						
(379.50)	9.00 m / 10.50 m	370.50 / 369.00	4	2.5 MPa / 4%	Silt argileux						
	10.50 m / 12.50 m	369.00 / 368.00	(5)	>10 MPa / 2%	Sable grossier compact						
	11.50 m / 12.50 m	368.00 / 367.00	6	2 MPa / 2.5%	Silt						
	12.50 m / 14.00 m	367.00 / 365.00	7	>10 MPa / 1%	Sable grossier						
CPT	Profondeur	Cote NGF	Couche	q_c/F_R	Type de matériau						
	0.80 m / 4.00 m	378.70 / 375.50	①	2.5 MPa /5%	Argile silteuse						
CPTU2	4.00 m / 5.50 m	375.50 / 374.00	2	4.5 MPa /2%	Sable grossier						
(379.50)	5.50 m / 10.00 m	374.00 / 369.50	3	1 MPa / 1%	Sable lâche instable						
	10.00 m / 14.00 m	369.50 / 365.50	4	3 MPa / 3%	Sable grossier						
					limoneux						
CPT	Profondeur	Cote NGF	Couche	q_c/F_R	Type de matériau						
	0.80 m / 3.50 m	375.50 / 374.80	①	3.5 MPa / 4%	Silt argileux						
CPTU3	3.50 m / 4.50 m	374.80 373.80	2	3.5 MPa / 2%	Sable silteux						
(378.30)	4.50 m / 7.00 m	373.80/ 371.30	3 2 MPa / 2% Sable silte		Sable silteux sensible						
	7.00 m / 9.00 m	371.30 / 369.30	3	1.5 MPa / 2%	Sable silteux sensible						

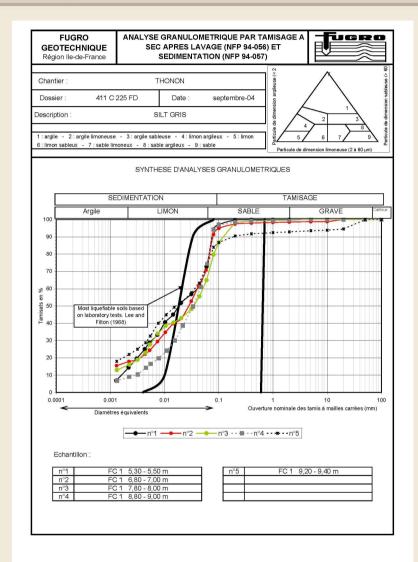

Synthèse des mesures instantanées et après dissipation des surpressions interstitielles


Sondage	Dissipation à :			Charge au repos					
CPTU1	Profondeur	Cote N	u_0 (m)	u ₁₀₀ (m)	NGF	/ 374.00	i	t ₅₀ (s)	$k_h(m/s)$
	5.50 m	374.00	21.50	0.20	374.10	0.10	XXX	300	5×10 ⁻⁷
	7.00 m	372.50	36.40	2.10	374.60	0.60	0.40	40	5×10 ⁻⁶
	8.50 m	371.00	39.50	4.00	375.00	1.00	0.30	90	10 ⁻⁷
	10.00 m	369.50	17.60	6.90	376.40	2.40	0.50	200	5×10 ⁻⁷
CPTU2	5.50 m	374.00	3.90	3.60	377.60	3.60	XXX	600	10 ⁻⁸
	7.00 m	372.50	45.50	8.50	381.00	7.00	4.7	100	10^{-7}
	8.50 m	371.00	43.20	8.50	379.50	5.50	1.8	200	5×10 ⁻⁷
	10.00 m	369.50	51.80	10.00	379.50	5.50	1.2	300	5×10 ⁻⁷
CPTU3	5.50 m	372.80	35.40	XXX	XXX	XXX	XXX	5000	10 ⁻⁹
	7.00 m	371.30	5.90	5.10	376.40	2.40	0.9	XXX	XXX
	8.50 m	369.80	49.50	8.50	378.30	4.30	1.0	2000	5×10 ⁻⁹
	10.00 m	368.30	51.00	10.00	378.30	4.20	0.8	6000	5×10 ⁻¹⁰

Courbes type de dissipation, essai CPTU2






Courbes type de dissipation, essai CPTU2

Synthèse des courbes granulométriques

Sondage carotté FC1

E1: -5.3 m / -5.5 m

E2: -6.8 m / -7.0 m

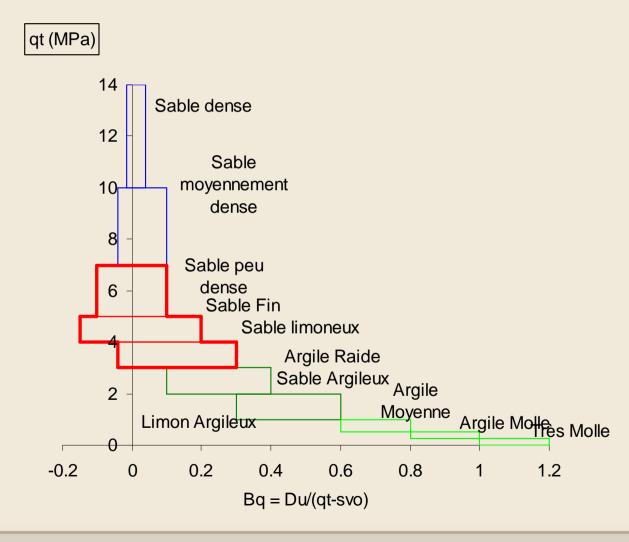
E3: -7.8 m / -8.0 m

E4: -8.8 m / -9.0 m

E5: -9.2 m / -9.4 m

Calage / fuseau de Lee & Filton

Extraits du carottage FC1

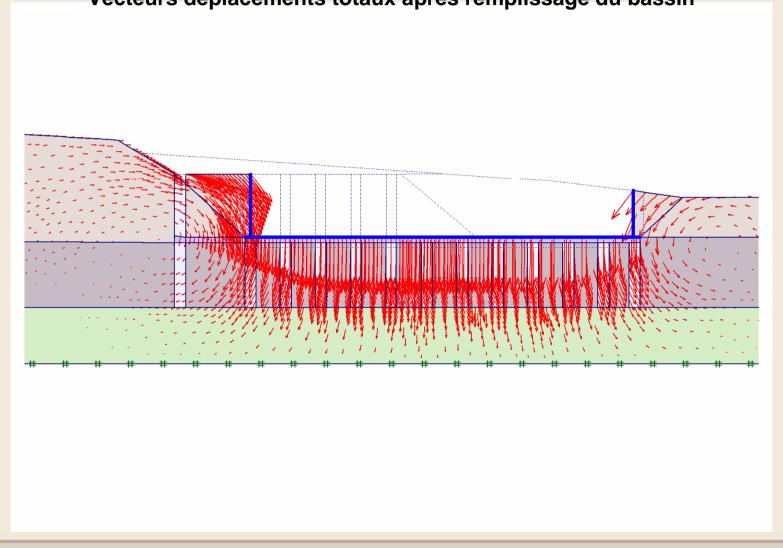


Carottage de -4.20 m à -7.50 m

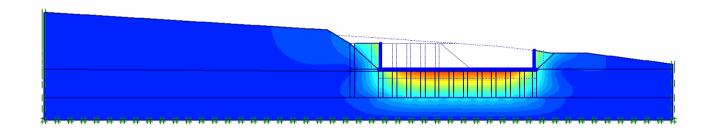
Utilisation du paramètre Bq pour l'analyse du potentiel de liquéfaction

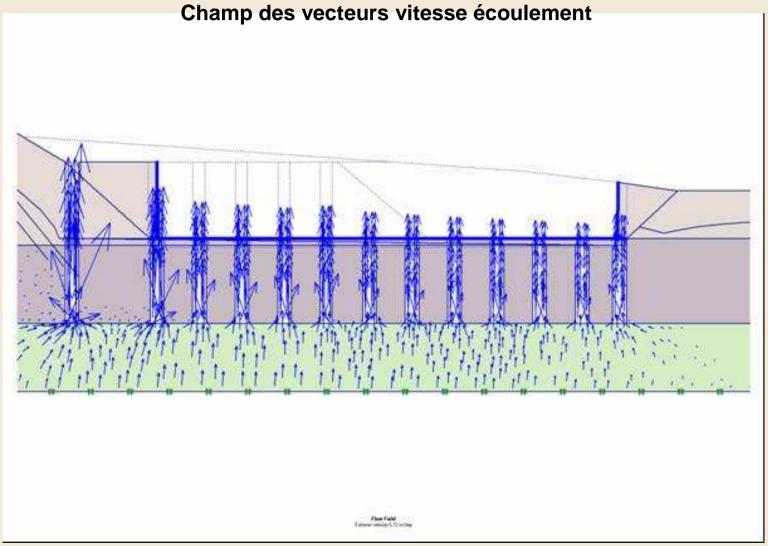
Contraintes du design

- Stabilité des talus de déblai lors de la phase terrassement
 - Stabilité du fond de fouille
 - ✓ Interaction du fond de fouille avec le lit du Pamfiot
 - ✓ Gestion des tassements différentiels compte tenu de l'hétérogénéité du site
 - ✓ Gestion des sous pressions / gradient hydraulique
 - ✓ Prise en compte de la sismicité du site et du potentiel de liquefaction des matériaux

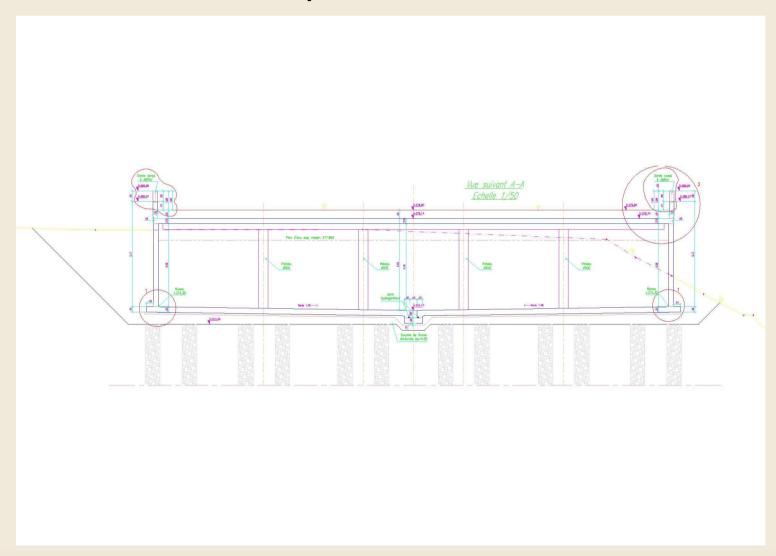

 $\hat{\mathbf{U}}$

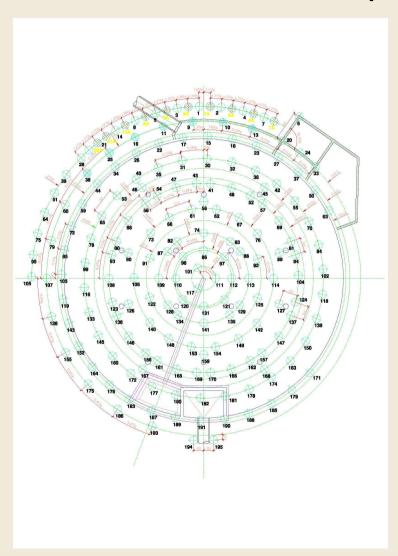
Solution globale de renforcement par colonnes ballastées


Modélisation numérique du réseau d'écoulement en interaction avec les colonnes Vecteurs déplacements totaux après remplissage du bassin


Modélisation numérique du réseau d'écoulement en interaction avec les colonnes Champ des déplacements totaux après remplissage du bassin

Modélisation numérique du réseau d'écoulement en interaction avec les colonnes


Modélisation numérique du réseau d'écoulement en interaction avec les colonnes Champ des équipotentielles


Solution de renforcement par colonnes ballastées: vue en élévation

Solution de renforcement par colonnes ballastées: vue en plan

Nb de colonnes: 220

Diamètre moyen: 50 cm

Longueur moyenne: 15 m

Réalisation des colonnes ballastées depuis le pré-terrassement

Terrassement du bassin après réalisation des colonnes

Terrassement du bassin après réalisation des colonnes ballastées

Terrassement du bassin après réalisation des colonnes ballastées

Conclusions

- Le bassin de Morcy représente une des pièces maîtresse du Collecteur Latéral du Lac (CLL)
- Cette ouvrage s'inscrit dans un environnement sensible et un contexte géotechnique et hydrogéologique complexe
- L'utilisation du piézocône a permis de caractériser finement une lithologie et une hydrogéologie locale délicate
- Les reconnaissances complémentaires ont permis de mettre en évidence une problématique multiple:
- Stabilité des déblais, stabilité du fond de fouille, hétérogénéité du fond de fouille, potentiel de liquéfaction des sols d'assise
- Le choix d'une solution globale de renforcement de sol par colonnes ballastées a permis de répondre à l'ensemble des contraintes tout en optimisant la structure par la prise en compte de l'interaction sol-structure et la mise en œuvre de dispositions de drainage pérennes dans le respect des coûts et des délais impartis pour cet ouvrage.