18 janvier 2007 Journée commune CFMS/CFGI : sècheresse géotechnique

Modélisation des essais de retrait-gonflement des sols argileux

F. MASROURI - Professeur

Comment prédire les variations volumiques d'un sol gonflant soumis à des cycles de sécheresse-pluie ?

Phénomènes d'interaction sol-structure

Modélisation numérique du comportement hydromécanique du sol

Modèle conceptuel pour sols fins

- Saturés
- Non saturés
- Gonflants

Farimah.Masrouri@ensg.inpl-nancy.fr

Modèles pour sols gonflants

Modèle pour sols gonflants	Type de sol
Gens et Alonso (1992); Alonso <i>et al.</i> (1999) : <i>BExM</i>	Gonflants non saturés
Robinet <i>et al.</i> (1994, 1998, 1999)	Gonflants saturés
Cui <i>et al.</i> (2002)	Gonflants fortement compactés non saturés
Baudet et Stallebrass (2004)	Argiles naturelles saturés

Modèle pour sols fins non saturés gonflants

- Sols fins \rightarrow Cam Clay
- Non saturés \rightarrow BBM (Barcelona Basic Model)
- Gonflants \rightarrow BExM (Barcelona Expansive Model)

BBM (non saturé)

- Hypothèses de base du BExM
 - Deux niveaux structuraux : macrostructure et microstructure

- Couplage micro / macro : $(\epsilon_{vm}^{e}) \rightarrow (\epsilon_{vM}^{p})$
 - (ϵe_{vm}) : déformations élastiques microstructurales
 - (ε ^p_{vM}) : déformations élastoplastiques macrostructurales
- Equilibre mécanique, hydrique et chimique micro / macrostructure

BExM

- Détermination de la courbe LC

BExM - Lois d'écrouissage

 Modification de la zone élastique en séchage et en humidification

BExM

Surface de charge dans l'espace (p^{*},q,s)

(Modèle continu, les fissures ne sont pas prises en compte)

Paramètres du modèle pour sols fins non saturés gonflants

• Sols fins \rightarrow Cam Clay

Paramètres	Unité	Définition		
М		la pente de la courbe d'état critique		
Г	MPa	l'indice des vides initial		
К		le coefficient de compressibilité élastique (indépendante de la succion)		
λ(0)		le coefficient de compressibilité plastique à l'état saturé		

Paramètres du modèle pour sols fins non saturés gonflants

• Non saturés \rightarrow BBM (Barcelona Basic Model)

Paramètres	Unité	Définition
r		un paramètre lié à la rigidité du sol quand la succion tend vers l'infini
β	MPa ⁻¹	un paramètre contrôlant l'augmentation de la rigidité avec la succion
p_c	MPa	une pression de référence
p_o^*	MPa	la pression de préconsolidation apparente sous une succion nulle
K _s	_	le coefficient de compressibilité pour des incréments de succion dans le domaine élastique
k	_	un paramètre décrivant l'augmentation de la cohésion avec la succion

- Paramètres du modèle pour sols fins non saturés gonflants
 - Gonflants \rightarrow BExM (Barcelona Expansive Model)

Paramètres	Unité	Définition				
s _o	MPa	la succion au-delà de laquelle les déformations macrostructurales plastiques apparaissent lors de la dessiccation				
s _h	MPa	la succion au-delà de laquelle les déformations macrostructurales plastiques apparaissent lors de l'humidification				
e_m	_					
k _m	_	les paramètres de lois d'écrouissage :				
f_{I0}		$ds = ds = K_m (d\varepsilon_{vSI}^p + d\varepsilon_{vSD}^p)$				
f_{II}	_	$us_i - us_h - \frac{f}{f}$				
n _I	_	$f_{I} = f_{I0} + f_{I1} \left(1 - \frac{p^{*}}{p_{0}} \right)^{n_{I}} \qquad f_{D} = f_{D0} + f_{D1} \left(1 - \frac{p^{*}}{p_{0}} \right)^{n_{D}}$				
f_{D0}	—	$(1 + a)(n^* + s)$				
f_{DI}	_	$K_m = \frac{(1 + c_m)(p + s)}{\kappa}$				
n _D	_	·~m				

 Simulation d'essais œdométriques à succion contrôlée (Cuisinier 2002)

- Matériau reconstitué
 - mélange de limon de Xeuilley (40 %) et de bentonite calcique (60 %)
 - $\gamma_{d} = 12,7 \text{ kN/m}^{3}, \text{ w}_{i} = 15 \%, \text{ S}_{rini} = 35 \%$
 - succion initiale comprise entre 20 et 25 MPa
- Contrôle de la succion
 - Technique osmotique succions ≤ 8,5 MPa
 - Technique des solutions salines
 8,5 MPa < succions ≤ 287,9 MPa

Simulation d'essais œdométriques à succion contrôlée

Chemins de contrainte suivis et paramètres du modèle

Deux essais comportant des cycles hydriques sous une faible pression verticale de 10 kPa avant le chargement

• $s_0 = 30 \text{ MPa } et s_h = 14 \text{ MPa}$

- Simulation d'essais œdométriques à succion contrôlée
 - Chemins de contrainte suivis et paramètres du modèle

- Simulation d'essais œdométriques à succion contrôlée
 - Paramètres du modèle

Paramètres définissant la loi de comportement macrostructural				
$\kappa \\ \lambda(0) \\ r \\ \beta \\ \kappa_s \\ p_c$	0,02 0,315 0,2777 8,054×10 ⁻³ MPa ¹ 0,015 0,609 MPa	p_0^* s_0 s_h k M	0,844 MPa 30 MPa 14 MPa 0,09 1,24	
Paramètres définissant la loi de comportement microstructural				
K m	0,011	e_m	0,25	
Fonctions de couplage micro-macrostructurale				
$f_I = 0.5 + 9.9 (p^*/p_0)^1$ $f_D = 1 \times 10^3 + 2 \times 10^2 (1 - p^*/p_0)^{0.1}$				

Simulation d'essais œdométriques à succion contrôlée

Résultats – Essai 5

- Simulation d'essais œdométriques à succion contrôlée
 - Résultats Essai 6

- Simulation d'essais œdométriques à succion contrôlée
 - Résultats Essai 7

- Fondation sur sol gonflant
 - Objectifs
 - Etude de l'influence des sollicitations hydriques (pluie et sécheresse) sur le tassement d'une semelle filante
 - Influence de la géomembrane

Analyse statistique basée sur un grand nombre de sinistres dus au phénomène de retraitgonflement

(CEBTP-Solen : projet RG - RGC&U)

R 352 Partie horizontale et partie verticale en tranchée

Fondation sur sol gonflant (déformation plane)

- Massif de sol
 - Argile homogène sur 1,6 m
 - Sol non gonflant
 - Remblai
- Géomembrane
 - Épaisseur 4 mm
 - Perméabilité 1.10⁻¹⁴ m/s

Fondation sur sol gonflant

- Caractéristiques de la fondation
 - Semelle filante en béton
 - Comportement élastique linéaire :
 - E = 27 000 MPa
 - v = 0,2
 - n₀ = 0,16

•
$$\gamma_{\rm s} = 26,5 \text{ kN/m}^3$$

• k_s = 10⁻¹² m/s

Paramètres de van Genuchten (courbe de rétention) :

$$S_{e} = \frac{S_{r} - S_{r(res)}}{S_{r(sat)} - S_{r(res)}} = \left[1 + (\alpha \ s)^{n}\right]^{-m}$$

• $n = 2,105; m = 1-1/n = 0,525; \alpha = 0,0235 \text{ MPa}^{-1}; S_{r(res)} = 0$

Fondation sur sol gonflant

• Caractéristiques du massif de sol

Matériau	Argile gonflante (mélange limon- bentonite)	Sol non gonflant	Remblai
Type de	Élastoplastique	Elastique linéaire	Élastoplastqie
comportement	BExM	(E = 6 MPa, ν = 0.2)	BExM
Porosité	0,5	24	0,6
Perméabilité à l'état saturé k _s	5.10 ⁻	5.10 ⁻⁷ m/s	
	Ajustement de la cou	urbe expérimentale :	Plus lâche que l'argile :
Courbe de rétention (van Genuchten)	n = 1	1,34	n = 1,44
	m = 1-1/r	m = 1-1/n = 0, 306	
	α = 1,5	MPa ⁻¹	α = 5 MPa ⁻¹
	S _{r(res)} =	S _{r(res)} = 0,02	

- Fondation sur sol gonflant
 - Conditions initiales
 - $\gamma_{d ini}$ = 12,8 kN/m³
 - $S_{r ini} = 35 \% \Rightarrow Succion = 20 MPa$
 - Conditions aux limites

- Fondation sur sol gonflant
 - Maillage
 - 1436 éléments et 1508 nœuds

Fondation sur sol gonflant

- Phasage de calcul
 - Données météorologiques à Reims (Beauchamp, 2006)

Mois	P (mm/mois)	ETP (mm/mois)	P – ETP (mm/mois)	P – ETP (m/s)	Conditions aux limites
Novembre	53,4	9,2	44,2	1,71×10 ⁻⁸	$> k - 5 10^{-9} \text{ m/s}$
Décembre	70,3	17,1	53,2	1,99×10 ⁻⁸	Phase I :
Janvier	41,4	16,2	25,2	9,41×10 ⁻⁹	Succion = 0 bumidification
Fé∨rier	86,5	35,1	51,4	2,12×10 ⁻⁸	namanoaton
Mars	14,1	50,9	-36,8	-1,37×10 ⁻⁸	Phase II :
Avril	64,3	80,9	-16,6	-6,40 ×10 ⁻⁹	Flux entrant = $-1,37.10^{-8}$ m/s
Mai	9,1	120,6	-115,5	-4,31 ×10 ⁻⁸	Sechage
Juin	56,2	104,7	-48,5	-1,87 ×10 ⁻⁸	Phase III :
Juillet	39,4	143,2	-103,8	-3,88 ×10 ⁻⁸	succion (w _R) = 20 MPa
Août	11,8	118,7	-106,9	-3,99×10 ⁻⁸	Séchage
Septembre	30,0	67,4	-37,4	-1,44 ×10 ⁻⁸	
Octobre	28,6	40,0	-11,4	-4,26 ×10 ⁻⁹	
P : Précipitation; ETP : Evapotranspiration Potentiel; P – ETP : Flux d'eau infiltré ou évaporé.					

Modélisation des essais de retrait-gonflement des sols argileux Fondation sur sol gonflant 77333 **Résultats** -65 cm Degrés de saturation A: x = -1,1 m C: x = 1,2 mD: x = 4,7 mB: x = 0 \rightarrow A (s) \rightarrow B (s) \rightarrow C (s) \rightarrow D (s) (S) Sans géomembrane (A) Avec géomelmbrane 1,1 1 0,9 Degré de Saturation 0,8 0,7 0,6 Sans géomembrane 0,5 0.4 0,3 Avec géomembrane humidification séchage 0,2 0 30 60 90 120 150 180 210 240 270 300 330 360 390 Temps (j)

Farimah.Masrouri@ensg.inpl-nancy.fr

29/35

Laego

Farimah.Masrouri@ensg.inpl-nancy.fr

30/35

Un modèle à 20 paramètres ? Des mois d'essais de laboratoire ? Des semaines de calcul ?

Ce n'est pas pour moi !

Ce modèle permet :

- de reproduire qualitativement les déformations volumiques d'un sol gonflant chargé, sous des sollicitations hydriques
- d'analyser les différentes configurations
 - de l'état initial du sol
 - de la profondeur de la couche d'argile
 - de l'épaisseur de la couche d'argile
 - des cycles hydriques
 - ...
- de valider les méthodes de diminution des risques de RG (géomembrane, terrasse, …)

En cours : essais sur les sondages du site du Deffend et de Champenoux

Laedo

Mesures en vraie grandeur

Farimah.Masrouri@ensg.inpl-nancy.fr

- Fondation sur sol gonflant
 - Courbes de rétention

- Fondation sur sol gonflant
 - Résultats

Laego

37/35

BExM

- Contrainte effective \rightarrow NL (Neutral Line)
- Couplage → SD & SI : « Suction Decrease & Increase »
- BBM → LC : « Loading Collapse »

Modèle	Paramètre	Unité	Essais nécessaires	
Cam-Clay modifié <i>BBM</i> –	М	(-)	3 essais triaxiaux classiques	
	$e_0^{}$	(-)		
BExM	к	(-)		
	λ(0)	(-)	un essai de chargement/déchargement sous une succion nulle	
	p_0^{*}	(MPa)		
	r	(-)	au moins deux essais de	
BBM – BExM	β	(MPa ⁻ 1)	chargement/déchargement sous succion contrôlée dont le chemin de contrainte est entièrement compris dans le domaine	
	p _c	(MPa)	élastique	
	Ks	(-)	un essai comportant un cycle de succion sous une charge verticale constante	
	k	(-)	essais de cisaillement à différentes succions	
	S _h	(MPa)	un essai d'humidification/drainage sous une faible charge verticale constante	
	s _o	(MPa)	un essai de drainage /humidification sous une faible charge verticale constante	
	f_{I0}, f_{II} ou a_{I}	(-)		
	f_{II}, f_{I2} ou b_I	(-)		
	$n_I, k_I \mathrm{ou} c_I$	(-)		
BExM	f_{D0} , x_I ou d_I	(-)		
	$f_{_{DI}}, f_{_{DI}}$ ou $a_{_D}$	(-)	un essai comportant des cycles hydriques sous une charge verticale constante	
	n_I, f_{D2} ou b_D	(-)		
	k_D ou c_D	(-)		
	x_D ou d_D	(-)		
	k _m	(-)		

BExM - Lois d'écrouissage

• Modification de la zone élastique en séchage et en humidification $\frac{dp_0^*}{p_0^*} = \frac{(1+e) (d\varepsilon_{vLC}^p + d\varepsilon_{vSI}^p + d\varepsilon_{vSD}^p)}{\lambda(0) - \kappa}$ $ds_0 = ds_h = \frac{K_m (d\varepsilon_{vSI}^p + d\varepsilon_{vSD}^p)}{f}$

Farimah.Masrouri@ensg.inpl-nancy.fr