Expérimentations et nouvelles méthodes de dimensionnement des pieux battus développées à l' Imperial College

> CFMS 9 Juin 2006

Richard Jardine

Thèmes principaux

- Le besoin de meilleures procédures
- Recherche sur les pieux equippés pour une meilleure compréhension du comportement fondamental.
- Nouvelles règles de conception et paramètres d'entrée
- Fiabilité des nouvelles méthodes
- Mise à jour et recherche récente

Tension autour du pieu: modèles d'expansion de la cavité (MEC)

• Volume du pieu en fonction de l'expansion radiale de l'argile.

•Modèles des sols élastiques/plastiques pour la prédiction des tensions et la pression des pores en fonction du temps.

- Des solutions théoriques pour la capacité de l'axe et de la base existent, mais non fiables ou précises
- La plupart des praticiens emploient des approches empiriques liées aux paramètres in-situ ou d'essai en laboratoire
- Méthodes existantes dans la littérature offrent un éventail large de prédictions, certaines meilleures que d'autres.
- Compréhension quasi-inexistante des concepts de mécaniques basiques

Règles conventionnelles de conception

 Méthode CPT de LPC donne globalement les meilleures prédictions

98 pieux battus dans l'argile et le sable:

Moyenne Q_c/Q_m = 1.15Ecart-type= 0.46

API donne 0.90 (moyenne) et 0.63 (écarttype)

Résumé: Briaud and Tucker 1988

- Les résistances de la base varie avec q_c, règles directes dévelopées pour prédire q_b à bout ouverts ou fermés.
- Des effets d'échelle importants incorporés suivant les essais labo à Oxford et autres données de terrain.
- Expérience particule photo-élastique nous eclaire sur les processus gouvernant.

Capacité de la base

Expérience particule photo-élastique pour pénétration du pieu

RÉPONSE DE CHARGEMENT

- Essais de chargement du pieu effectués à Labenne et Dunkerque 2-3 jours après l'installation
- Mesures locales du cisaillement et des tensions effectives radiales.
- Des changements importants en σ_r^\prime
- Le critère de rupture de Coulomb est validé

- Coulomb: $\tau = \sigma'_{rf} \tan \delta$
- Mais σ'_r varie en fonction du chargement de pieu
- Contribution dilative: varie avec la rigidité de cisaillement de sol, rugosité de l'interface et le rayon du pieu.

$$\sigma'_{rf} = \sigma'_{rc} + \Delta \sigma'_{rd}$$
$$\Delta \sigma'_{rd} = 2G \, \delta h/R$$
$$G = f(q_c, \sigma'_{v0})$$

- Effet radial du pieu: dilation domine les petits modèles, effet insignifiant pour les gros pieux. Légèrement différent pour la tension; tous regroupés dans de simples expressions
- Et δ?

Résultats principaux des essais de chargement dans le sable

- Faire CPTUs, essais-labo de l'interface de cisaillement, distributions de la taille des particules, mesurer la hauteur de la nappe et poids unitaires
- Traceurs Piezocone font la distinction entre argile/vase et sable
- Application de formules simples pour la résistance locale de l'axe. Capacité globale sujet aux effets significatifs des couches, minceur (L/D) et diamètre, D
- Application d'équations simples pour la base q_b incluant facteur d'échelle
- A noter: effet du temps potentiellement important sur la capacité de l'axe

Points principaux sur les nouvelles procédures pour le sable

- Essais ICP sur sites argileux mous à très dûr; δ décroissant; sensibilité décroissante.
- Historique apparent des tensions (YSR = OCR apparent), sensibilité et angles de cisaillement à l'interface (force résiduelle) sont les variables clefs
- h/R est aussi un paramètre essentiel, c.f. sable

RECHERCHE PIEUX BATTUS EN MILIEU ARGILEUX

New Design Methods for Offshore Piles	Méthodes ICP pieux battu Jardine and Chow Evaluation sur 120 essais da & argiles	DOUR JS 1996 ans sables
	Moyenne Qc/Qm proche de	1.0
	Ecart-type des resultats (sal argiles)	oles et
	API	63%
	ICP approche	23%
MTD Publication 96/103	LPC cone (moyenne = 0.9)	46%

Extensions et additions

- Domaine de recherche émergent Période de temps ecoulées Action cyclique Chargement sismique Action groupe statique
- Applications en Azerbaijan et au Venezuela; Etudes des base de données:

'Problèmes' argiles et sables Sables mica et calcaires Pieux carrés et en forme H Choix basé sur la fiabilité pour FoS Factors de charge et de résistance (LRFD)

Exemples cités ou les methodes de conception API conventionelles occasionnent de sérieux problèmes

Sables mica et calcaires, capacités faibles

Dunkerque et EURIPIDES – vieillissement des pieux

Sungai Perak et Hound Point, capacités faibles

EURIPIDES, capacité largement sous-evaluée sur sable dense

Résumé général des données IC : 250 essais: Qc/Qm				
	ICP	API		
Capacité de l'axe dans le sable				
Moyenne	0.99	0.87		
Ecart type	0.28	0.60		
Capacité de l'axe dans l'argile				
M	1.03	0.99		
ET	0.21	0.32		
Capacité de la base dans le sable				
Μ	1.01	0.83		
ET	0.19	0.98		
Capacité de la base dans l'argile				
М	0.85	1.06		
ET	0.30	0.73		

CONCLUSIONS

- Problème principal methodes de conception traditionnelle: peu de fiabilité et fondements physiques incertains
- Méthodes ICP : expressions simplifiées de l'effort effectif à partir de la recherche sur les pieux hautement equippés, essais en lab etc
- Verifications à partir des bases de données montrent des améliorations considérables de fiabilité: meilleure économie et sécurité

CONCLUSIONS

- Procédures prolongées jusqu'à 2005, pour couvrir un éventail plus large de pieux et sols
- Base de données élargie pour demontrer la fiabilité et identifier les limitations potentielles
- Recherche émergente pour étudier l'effet du viellissement
- Etude supplémentaire sur les effets du chargement cyclique; action sismique; action de groupe sur la capacité axiale

- Dr Andrew Bond (PhD 1989)
- Dr Barry Lehane (PhD 1992)
- Dr Fiona Chow (PhD 1997)
- Collègues a LCPC, Bordeaux LPC, IFP
- Dr Jamie Standing
- Support de beaucoup d'autres à Imperial College et BRE

Remerciements