LA CONGÉLATION — ARTIFICIAL FREEZING OF SOILS, IN CIVIL ENGINEERING

REx à l’international: Feedback out of France

CFMS SCIENTIFIC AND TECHNICAL DAY — NOVEMBER 17TH 2023
REx à l’international: Feedback out of France
Content

- Max Bögl Groundfreezing
- Cuyperstrap – Amsterdam
- Metro - Brussels
Max Boegl Ground freezing

- Equipment for freezing with liquid nitrogen
- Equipment for freezing with brine
- In-house monitoring and surveillance platform
- Thermal calculations
Overview

- Part of the overall project “de Entrée”
- Functional tender for staircase with single-sided escalator
- New staircase connecting the entrance hall and the metro distribution level
- Planning, execution and self-supervision

Client: City of Amsterdam
Construction time: 01/2019 – 06/2020
Freezing: 04/2019 – 11/2020
Freezing Method: Brine freezing
Cuyperstrap – Amsterdam Central

Initial situation

- Most important junction of the city of Amsterdam
- Historical building from the 19th century
- Metro distribution hall below the station square
- Immersion tunnel for the metro under the station
- Existing braced excavation with sandwich and bored pile walls
- Backfilling with flushed-in sand
- Groundwater level = upper edge of sand layer
- Excavation pit not watertight (anymore)
Constraints and site conditions

- Historical and new building structures
- Low working height (<2.5 m) in the station concourse
- Limited accessibility of the working area under the station hall
- Constrained space conditions underneath the station hall
- Limited space inside the station and in front of the station
- Problem: Creating a watertight excavation pit

- Excavation pit solely made of a frozen wall without bracings
Cuyperstrap – Amsterdam Central

Design of the frozen body

Constraints

- Obstacles in the ground
- Connection to tunnel roof, diaphragm wall and bracing
- Limiting influence of frozen body to the existing structures

Thermical calculations

 Structural calculations
Cuyperstrap – Amsterdam Central

Execution – phasing of works

Phase 1: Drillings
- 43 Freeze pipes
- 10 Temperature pipes
- Length up to 9,0 m
- Threded pipes

Phase 2: Primary freezing
- 200 m of brine circuit
- 180 Temperature sensors
- 120 kW freezing capacity
- 6 weeks

Phase 3: Excavation
- Depths 4,5 m
- 850 Big Bags of material
- Thickness of frozen body ca. 3,5 m
- Frost body with sealing and structural function

Phase 4: Civil works
- Concrete works
- Cutting of the diaphragm wall
Execution - monitoring

- 10 temperature measurement pipes with 11 sensors each
- 9 flushed-in individual sensors on the top of the tunnel ceiling
- 45 sensors in the distribution circuit
- Continuous measurement of temperatures in the ground
- Assessment of frost body growth
- Monitoring of connection to diaphragm wall
- Comparison with thermal calculations
- Monitoring of the displacement with 3 inclinometers
Cuyperstrap – Amsterdam Central

Execution - Drillings
Execution - Distribution circuit for brine
Execution – Freezing and excavation
Freezing plant in front of the station building
Overview

- Part of the Project « Constitution - Metro & Pre-Métro Gare Du Midi – Lemonnier »
- Tunnel section of 25 m under an existing tramway tunnel.
- Connection between two cut-and-cover sections
- Drilling, freezing works and monitoring

Details

- Client: SM Toots
- Owner: STIB/MIV
- Start of Construction: 06/2023
- Freezing Method: Combined, primary freezing with LN2, maintenance freezing with brine
Metro – Brussels

Tunnel section tramway tunnel - design

- Frost body as water tightening element, no structural function
- No overburden between existing tram tunnel and new tunnel section
- Intensive monitoring of the existing tram tunnel and adjacent structures
- Execution of the tunnel with fouilles blindées
Site conditions and constraints - geology

- Heterogenous ground conditions with alternating layers of sand, silt and gravel
- Underlying clay layer lower than originally foreseen
- Build-up of groundwater level on the south side due to the cut and cover tunnel sections
- Groundwater flow in the permeable layers
Metro – Brussels

Site conditions and constraints

- Highly populated inner-city area, close to Gare du Midi
- Restraints for the delivery of liquid nitrogen (LN2)
Metro – Brussels

Execution

Phase 1: Excavation of the pit and drillings

- 41 (horizontal) Freeze pipes
- 10 (inclined)
- Temperature pipes
- Length up to 35 m
- Welded inox freeze pipes

Phase 2: Primary freezing

- Liquid nitrogen installation
- Switch to brine freezing
- Monitoring

Phase 3: Maintenance, excavation and civil works

- Freezing with brine
- Monitoring
Metro – Brussels

Phase 1: Excavation of the pit and horizontal drillings
Outlook

- Completion of drilling works
- Installation of freezing equipment and distribution circuits for liquid nitrogen and brine
- Start of freezing foreseen for Q3 2024
- Duration of freezing approximately 1.5 years
Thank You

Questions?

cnellessen@max-boegi.de
bmueller@max-boegi.de