Journée technique CFBR – CFMS – SPTF FNTP du 16 mai 2019

23 Avenue Condorcet, Villeurbanne

REX Barrages en sols fins

J-M Lejeune Consultant J-J Fry EDF

Journée parrainée par :

CONCEPTION ET CONSTRUCTION des ouvrages en sols fins

Sommaire

- 1. Barrages en terre
- 2. Reconnaissances et études
- 3. Construction, contrôle, pathologie
- 4. Auscultation
- 5. Conclusion

ETUDES - BARRAGES EN TERRE

« Humilité devant la nature et respect de quelques fondamentaux »

DONNEES DU SITE

- Climat Régime pluviométrique et hydrologique
- Conditions sismiques
- Topographie et morphologie
- Nature des fondations (épaisseur meuble déformable niveau rocheux)
- Ressources du site en matériaux (terres, filtres, enrochements)
- Réutilisation des matériaux des fouilles potentielles (évacuateur, Usine et chenaux, DP...)

AUTRES ELEMENTS CLE

- Parti pour l'évacuateur de crue
 Durée des travaux et programme
 Maitrise des crues en phase travaux

SANS OUBLIER... Exigences client – Coût.

SOLS FINS - CLASSIFICATIONS

1- Critère % de fines :

• USCS: $+ de 50\% < 74\mu$

• British standard: + de 35% < 60µ

• SHW Britannique: + de 15% < 60µ

• GTR: + de 35% < 80µ sols de classe A

2- Plasticité (<400µ) et sensibilité à l'eau :

O W, WL, WP, IP

Indice de consistance Ic=(WL-W)/(WL-WP)

Mais des sablo graveleux grossiers 0/200mm à plus de ≈12% de fines ont à court terme un comportement de sols fins (traficabilité coté humide) et sont quasi étanches.

Ex: Chili 1982 – Barrage homogène Machicura secondaire H=45m

Photo JM Lejeune

Mais aussi Influence de l'origine sur les propriétés géotechniques des sols fins

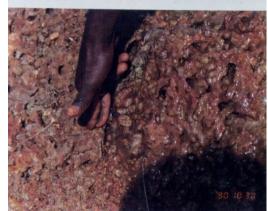
Alluvial Sédimentaire Glaciaire

80% <80μ IP=25 à 32% Φ'≈ 22 à 24°

Sols résiduels (Altérations en place des roches sous Climat tropical)

75%<80μ IP≈25% Φ'≈ 32 à 34°

ALTERATIONS – NOMENCLATURES


ANOMALIES

Nature (suivant roche mère)	Degré altération roche mère (UK)	Appellation	Observations
--------------------------------	-------------------------------------	-------------	--------------

Sol résiduel totalement cimenté	Cuirasse (massiv concentration hyder et aluminium			Souvent non ripable		
Sol résiduel partiellement cimenté	Latérites gravillo 5/25 - rognons et	•	"Latérites"	Granulométrie discontinue (nodules et fines		
	argile latéritique / arène argileuse	ı vıav		VI: Sol - Structure roche mère non visible		
Sol résiduel	argile silteuse / arène sableuse	V	"Saprolites"	V et IV : Sol mais		
	apparition de rognons rocheux dans le sol résiduel	IV		structure de la roche mère encore visible		
	moins de 50% de roche	III				
Roche mère		II	Roche mère			
	Sain	I				

Burkina – La Comoé – Canalicules observées – Chenal DP et fondation RG: taille: quelques mm à 30 cm

Difficultés accrues en <u>paysage volcanique</u>: <u>Alternances</u>: roches massives, roches altérées poreuses, paléosols (terres) intercalés, roches tendres (tuffs), cendres déposées en environnement lacustre, etc.

MISE EN GARDE: Extrême sensibilité des caractéristiques des sols tropicaux (limites Atterberg, Proctor...) au mode de préparation des terres pour les essais de laboratoire - Source de lourds problèmes d'étude, construction et contrôle.

EXEMPLE DE ZONAGE - LA COMOE (1989-91) BURKINA - Pluie:1250 mm/an

Argiles latéritiques & latérites gravillonnaires

PBS TERRES? NON

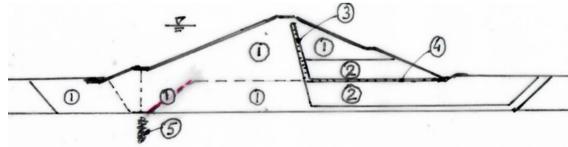
Spec: -1/+1 et >95% OPN

<u>Contrôles</u> (Hilf - Nb: 1280) Argiles latéritiques (1)

- w-wopn= -0,1
- 97,5% OPN

Latérites gravillonnaires (2)

- w-wopn= -0,4
- 98.1% OPN


Auscultation fin construction

Ru ≈ 0 (20 capteurs)

MAIS DIFFICULTES:

- Filtre fin Protections
- <u>Fondation</u>
 (<u>canalicules en RG</u>)

Coupe type zone rivière (purge)

- (1) Argile latéritique (2) latérites gravillonnaires (3) Filtre fin (4) tapis drainant
- (5) injections TAM dans les altérations + obturateur au rocher

---- Coupe zone centrale avec canalicules

----: géotextile

Photo JM Lejeune

LA COMOE (Suite)- Points délicats: Filtre et protections des talus en sols fins

Filtre L=80cm

Protection talus aval 2,2/1

Moellons latéritiques 15/25cm + bourrage de grave latéritique entre les blocs

Photos JM Lejeune

EXEMPLE DE ZONAGE ALGERIE - DOUERA

SMD: amax=0,35g M=6.3 SMP: amax=0,53g M=7.2

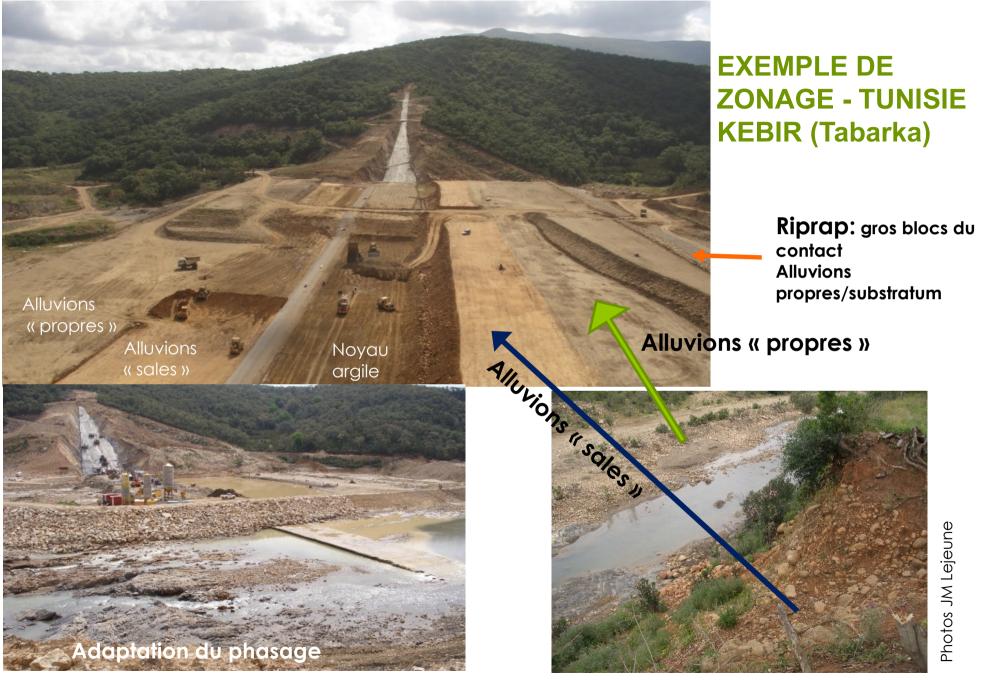
PB NOYAU ARGILE?: non

Mais difficultés avec les <u>Recharges</u> (grès très tendre) ≈ 15% <80µ et ≈25%>20mm après compactage

Recharge Amont:

Non liquéfaction:

Compactage >98%OPM


Couche 40cm
12 p V4 + 4 p V4 en statique
Planches d'essais
avec SPT:
(N1)60 ≈ 35cps

Barrages en terre

Photos JM Lejeune

ETUDES « PROSPECTION »

1976: Une prospection « à l'ancienne »

Noumbiel sur la Volta Noire (Burkina / Ghana) (EDF/DAFECO)

Reconnaissances et études

Etudes - Prospection de site

Afrique, Altérations degré VI, V, IV avec <u>nappe basse</u>

Supériorité des <u>puits manuels</u> (fondation <u>et emprunts)</u>: <u>visitables</u> par le géotechnicien

Echantillonnage de qualité possible :

- Boites cubiques et trousses coupantes + sacs
- Mesures au cohésimètre, poinçon...

Cameroun

Mokolo 1974 +

_La Mapé 1982

Photos JM Lejeune

Etudes - Essais en laboratoire

Identifications visuelle + identification labo

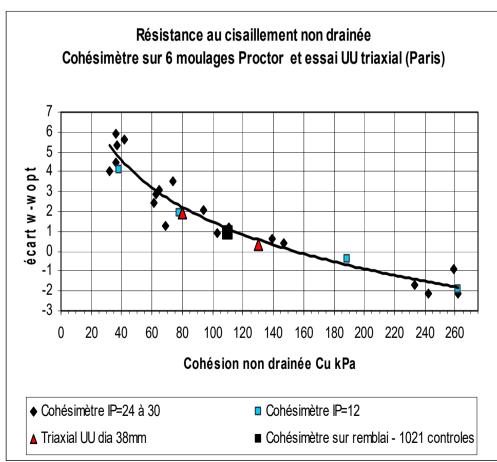
groupes de sols <u>couvrant la plage de variabilité</u>

Sur échantillon représentatif de chaque groupe:

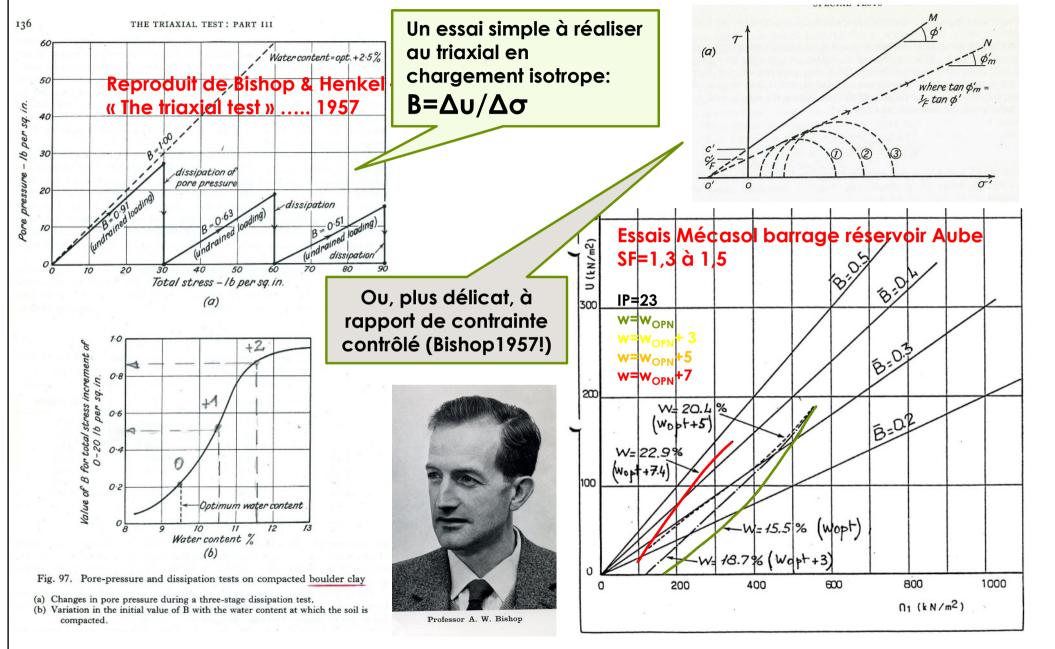
A - Ré-identification complète dont minéralogie (Si mélange) et γs. Essais de compactage PN « soigné » avec tracé des teneurs en air 0, 5%, 10% et cohésimètre sur moulages côté humide.

- B Essais couvrant les plages de $(w w_{OPN})$ et $\gamma d/OPN$ envisagées
 - a. Résistance intergranulaire : triaxiaux CD ou CU+u saturés sous CP
 - b. Résistance Résiduelle : cisaillement alterné à la boite (si IP>27)
 - c. Résistance court terme: Triaxiaux UU
 - d. Génération et dissipation des pressions interstitielles: Ru et Cv au triaxial
 - e. Perméabilité après consolidation et avant cisaillement au triaxial
 - f. Compressibilité, gonflement, perméabilité, Cv : à l'oedomètre
- C Dispersivité et érodabilité au pinhole test (ou HET)

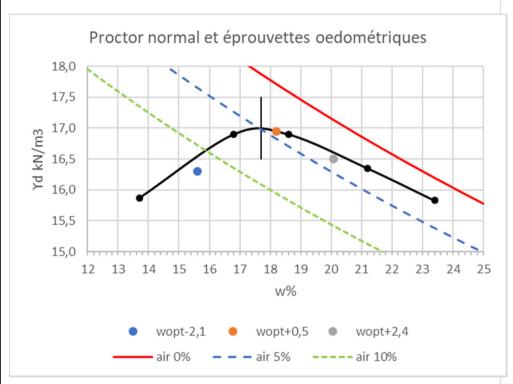
MAIS : Difficulté en l'absence de planches d'essai de déterminer les valeurs caractéristiques des terres qui seront mises en œuvre <u>sur chantier</u>

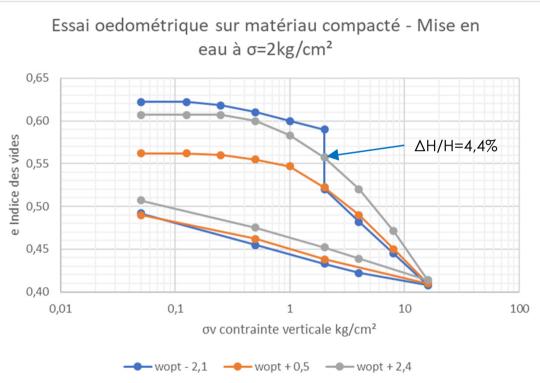

CONCEPTION ET CONSTRUCTION des ouvrages en sols fins Etude - Compactage coté humide: Valorisation de l'essai Proctor en termes de résistance non drainée

Cu: Résistance non drainée au cisaillement des terres compactées est un indicateur puissant et simple à mesurer de l'écart w-w_{OPN} côté humide


Pratique ancienne (1976) : Aiguille Proctor (Rp) et Écrasement du moulage (Rc)

ZONE RDS Type DI Proctor normal 8d opt = 1,76 t/m 1,90 180 1,70 1,60 W% 25


Cohésimètre sur les moulages Abaque Cu=f(w-w_{OPN})



Compactage côté humide: Réponse en pression interstitielle au chargement non drainé

Etudes – Essais Labo- Compactage coté sec: Effondrement de structure et augmentation de la perméabilité

Afrique - Emprunt : haute terrasse alluviale - 86%<80µ - WI=44, IP=30

À wopt-2,1: Effondrement à la mise en eau sous $\sigma v = 200 kPa$: $\Delta h/h = 4,4\%$

Effet sur perméabilité: k (w_{OPN} -2,1)= 15 k (w_{OPN})

ETUDES: Passage résistance au cisaillement labo – résistance opérative en masse sur le barrage

Représentativité des échantillons compactés au labo?

- Variabilité naturelle des terres et donc de w_{OPN} et de w- w_{OPN}
- Surfaces de cisaillement dues aux engins NON incluses et donc pas d'effet de rupture progressive sur ces surfaces,
- Effet de la dimension et du mode de préparation des éprouvettes labo (détails de préparation du sol, compactage statique ou dynamique...),
- Vitesse de chargement labo >> vitesse chantier

Prudence et corrections nécessaires pour passer aux valeurs de calcul

Nota: Les prélèvements intacts en gros diamètre sur des planches d'essai (<u>lorsqu'on en dispose....</u>) réduisent en partie ces problèmes

CORRECTIONS A APPORTER AUX MESURES LABO

Résistance non drainée opérative en masse:

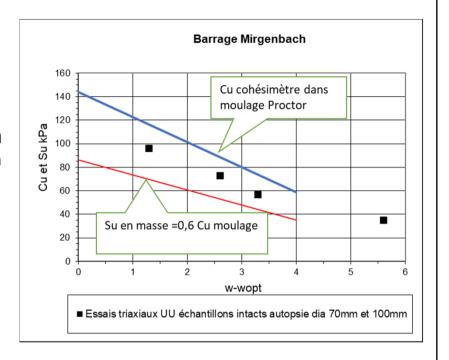
<u>Argiles très plastiques:</u>

Su terrain ≈ 0,60 Su labo essai rapide UU petit diam Source: P. Vaughan (Clay fills), Potts et al, Rupture Carsinaton

Confirmé par la rupture du Mirgenbach: Su terrain ≈ 0.60 Su cohésimètre

Résistance intergranulaire en masse

(non valable si plans horizontaux généralisés dus aux engins)



Perméabilité en masse

Anisotropie – Incidence des inter-couches

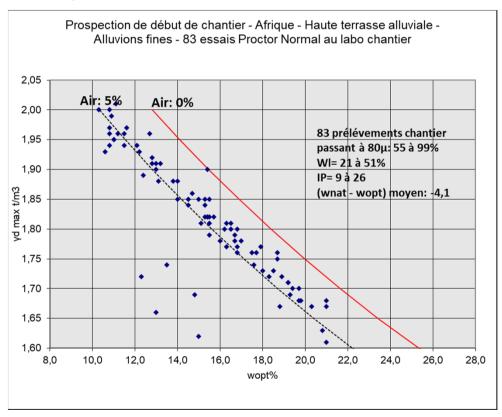
CALCULS

- **Ecoulements**
- Stabilité

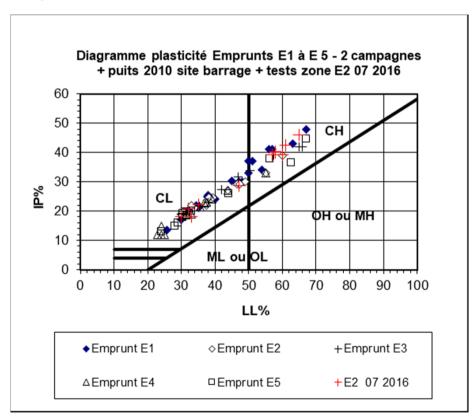
Dossier d'appel d'offres-Spécifications

- o Investigations complémentaires (notamment de début de chantier)
- Nature, provenance et caractérisation des matériaux
- o Préparation et mise en œuvre des matériaux
 - Planches d'essais et essais associés
 - Essais de convenance
 - Compactage: Pour les terres, w-w_{OPN}, %OPN, fourchettes de résistance non drainée
 - Compacteurs: certains peuvent être proscrits (RV bille lisse)
 - Traitement des inter-couches
 - Méthodes et fréquences de contrôles
- Equipement du laboratoire de chantier
- Pose et suivi des appareils d'auscultation en phase construction

Dossier d'appel d'offres - Information géotechnique


Regroupe les reconnaissances et essais de la phase étude - A monter avec le soin le plus extrême – Support potentiel en phase travaux des réclamations géotechniques et de leurs conséquences (extensions de délais et couts) dans des Marchés de type FIDIC

Une difficulté en étude, construction et contrôles : La variabilité naturelle des terres (granulométrie et limites)


(même en zone géographiquement limitée et géologiquement / morphologiquement homogène....

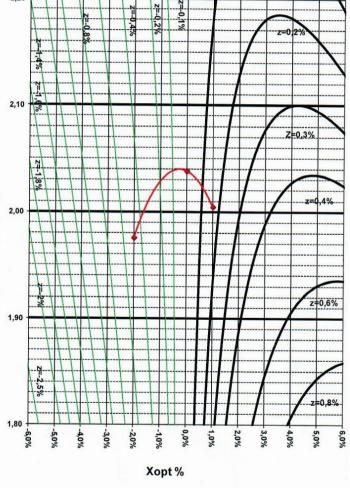
.....et donc des essais Proctor et des caractéristiques mécaniques associées

Exemples : Essais de convenance en début de travaux pour ≈ 3 à 4 hm³ de terres

Afrique de l'Ouest – Haute terrasse- Alluvions fines Variabilité des Proctors normaux

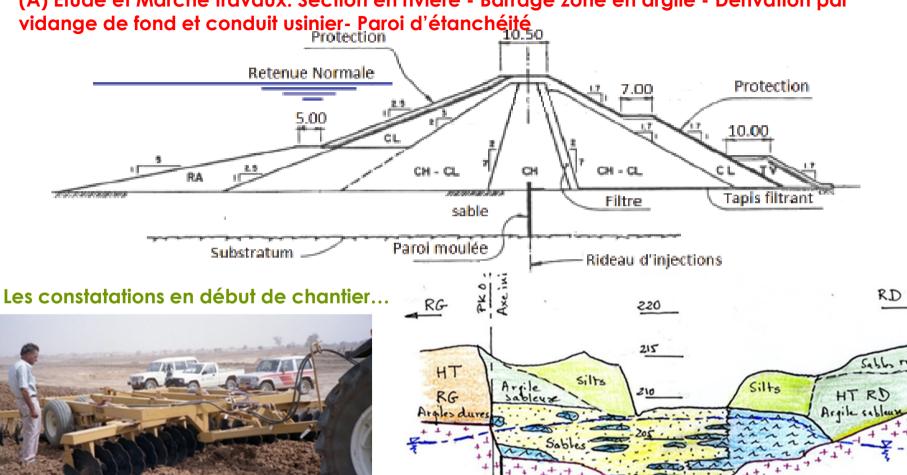
Tunisie – Remplissage alluvial fin dans la vallée de l'Oued – Variabilité des limites d'Atterberg

Construction


Un moyen de s'affranchir de cette variabilité: Contrôle de compactage par la Méthode de Hilf Associée à une mesure de densité humide in situ

Photos F. Cointe

....et néanmoins nombreux chantiers toujours « contrôlés » avec « Proctors de référence » ...



Mesures de Su au cohésimètre dans le moulage

Construction JML

Modification radicale d'un projet d'exécution

(A) Etude et Marché travaux: Section en rivière - Barrage zoné en argile - Dérivation par

HT RG

200m

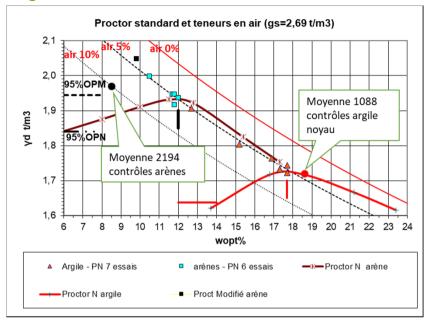
Argile sèche et très dure de HT (wopt-4,5). Zonage d'emprunts en termes CH, CH-CL, CL impossible en exploitation industrielle tant en termes géographiques qu'altimétriques

Argiles bleutées organiques Su cohésimètre ≈ 30kPa en quasi continuité amont aval

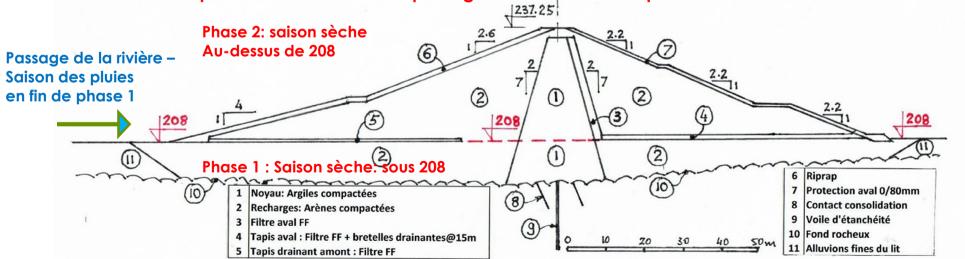
rivière 200m

Zone

HT RD


100m

Modification radicale d'un projet d'exécution


.....Essais terrain et labo sur un matériau alternatif moins problématique: arènes d'altération (10 à 30% < 80µ)

(B) Tel que construit: Barrage Noyau argile (1) + Recharges arènes (2) fondé au rocher après purge totale - - Deux phases de travaux avec passage de la rivière sur la partie basse

Construction

Phasage de travaux dans la zone en rivière

1- Purge des alluvions et préparation rocher en fondation du noyau

3- Fin de la saison des pluies, après passage de la rivière sur la partie basse

	Nouvelles spécifications											
	%<5mm	% < 80µ	LL%	IP%	w-wopt	%OPN	Résultats planches d'essais					
Argiles du Noyau	90 à 100	> 40%	20 à 50	12 à 32	0 à +2	> 94% toutes mesures > 96%pour 90% des mesures (**)	Couche 30cm - 4 passes CAT 825					
Arènes des Recharges	50 à 100	5 à 30	<36	<20	-2 à +1(*)	> 94% toutes mesures > 96%pour 90% des mesures (**)	Couche 50cm - 4 passes Ingersoll rand V4					

- (*) spécification élargie à -3,5 à +1 en dernière phase de travaux
- (**) examiné par série de 20 résultats

2- Construction partie basse sous 208

Photos JM Lejeune

4- Vue générale de la zone rivière en fin de saison des pluies 5- Construction au-dessus de 208

Construction JML

Incidence du passage de la rivière sur la partie basse du barrage

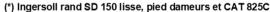
				Résultats des controles										
Zone Pério		Nb controles		Hilf		Etuvage Hilf		Caractéristiques			moyennes de mise en œ			œuvre
	Période	(*)			w-wopt	%OPN	w-wopt	w %	γd	γh	\$ %	air%	%< 80μ	IP
Arènes recharges	Janvier - Juillet 1991	750	-3 à +1	99,1	-1,4	99,0	-1,3	8,7	1,96	2,13	63	9,9	14,7	14,5
	Novembre 1991	52		100,6	-1,5	100,4	-1,3	8,9	1,98	2,16	67	8,6		
Argiles du	Janvier - Juillet 1991	266		97,8	+0,7	97,6	+0,9	17,4	1,75	2,05	88	4,3	80	23
	Novembre 1991 12 tests	12		98,1	+ 0,2	97,7	+ 0,6	18,7	1,72	2,04	90	3,7		

Essais labo ru sur arène en isotrope B=0,11 non saturé B= 0,30 « saturé » sous 10m d'eau

Cv≈2 x 10-2 cm²/s

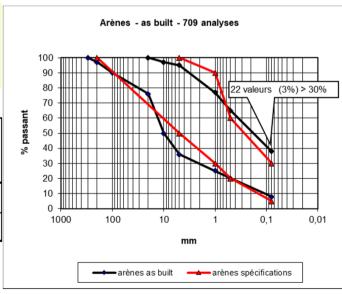
Arènes γs 2,685 Argiles γs 2,680

(*) Controles densité in situ + Hilf + étuvage 24h points Hilf et in situ


<u>Par précaution, pour les arènes</u>: **Amont**: Tapis drainant – **Aval**: cinq tranchées drainantes + 8 puits - Renforcement de l'auscultation sous 208

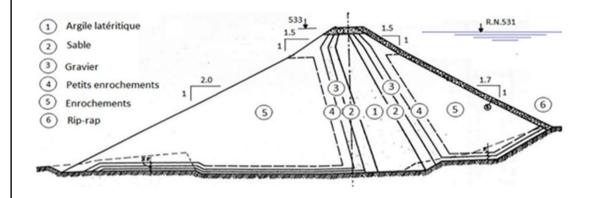
Mesures fin de construction du barrage en zone rivière –

Capteurs en partie basse sous 208:


Arènes: ru≈0,05 à 0,09 - Noyau: ru=0,30 à 0,41

		Contrôle de compactage des remblais - Valeurs moyennes ensemble du chantier													
	Identification			Cu sur Hilf		lilf	Etuvage des Hilf		Caractéristiques					Compacteurs	
Zone	%<80µ	LL%	IP%	remblai vane test kPa	%OPN	w-wopt	%OPN	w-wopt	w %	γd	S%	% air		utilisés	
Argiles - Noyau et clés	82	38	23	110	97,8	+ 0,6	97,4	+ 0,9	18,6	1,72	89	3,8	de 2x10-10 à 1x10-9	PD: CAT 825C	
Arènes des Recharges	19	27	15	na	99,5	- 1,6	99,3	- 1,5	8,5	1,97	63	9,9	2x10-7	Divers (*)	

Arènes γs 2,685 Arailes vs 2.680 2194 controles Hilf acceptés 1088 controles Hilf acceptés


3065 réalisés 1660 réalisés

Construction JML

Photos |

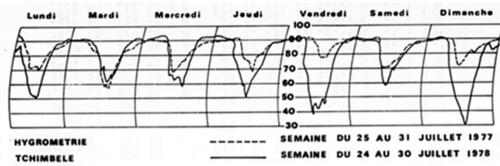
Tchimbélé – Gabon – 1977-1978 – H=36m Zone équatoriale - Pluie 2500mm/an – Site en foret - Forte hygrométrie

Sol résiduel altération gneiss 70 à 85% < 80µ Wl=75 à 85% IP=45 à 56% w_{nat}-w_{OPN} jusqu'à +13 (?)

Etude FEM du risque de fracturation hydraulique du noyau pour fixer l'écart w-w_{OPN} acceptable (approche américaine Kulhawy Gurtowski 1976)

→ Maxi: wopt+6

Des tentatives de séchage vouées à l'échec

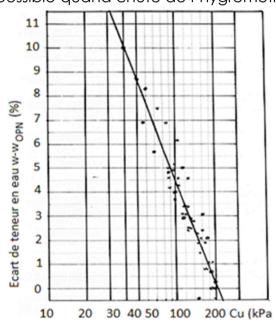

Mélange argile /latérite gravillonnaire

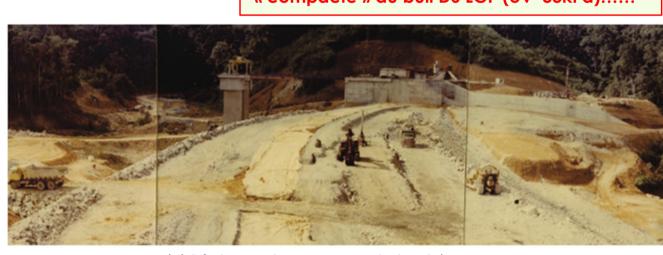
Hangar chauffant

.....Et des gros problèmes de contrôle liés à la forte variabilité des terres....

Construction

Tchimbélé – Gabon – 1977-1978 (Suite)


Les pratiques adoptées sur chantier pour réduire et contrôler la teneur en eau


Mais, sur le principe :

une pratique à l'opposé de l'approche britannique historique des noyaux très humides (« puddle clay cores ») actualisée à:

Monasavu lles Fidji (1979-1982). H=80m, Noyau Su= 17kPa , w=72%, γd= 0,90 t/m3 « compacté » au bull D6 LGP (σv=33kPa).....

(1) Humilité devant la nature et la physique: séchage uniquement possible quand chute de l'hygrométrie – Préparation de stocks

(4) Bâchage du noyau en alerte pluies

(2) Contrôle indirect du séchage à l'emprunt par mesure au cohésimètre de la résistance non drainée (matériau compacté dans le moule Proctor)

(3) Réception sur remblai (w-w_{OPN}, %OPN en méthode de Hilf contrôlée par étuvage à 24h

Les résultats (compactage CAT 815 et 825)

o 1977: mise en place moyenne wopt+5,5 et 96%OPN

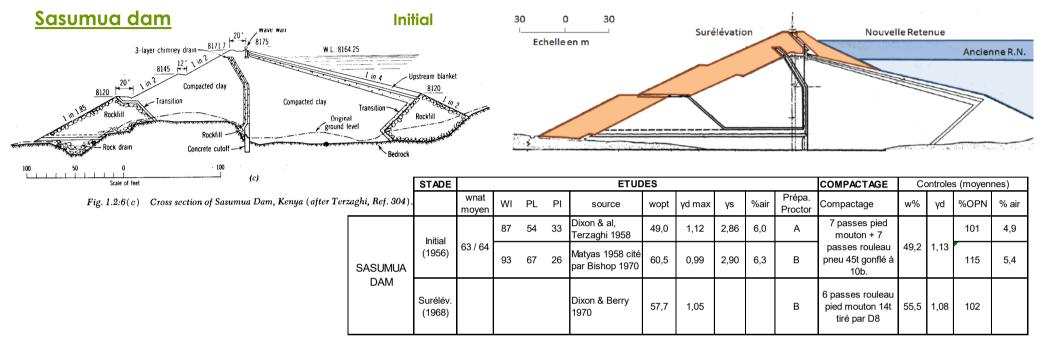

o 1978: mise en place moyenne wopt+3,9 et 97,5%OPN

Photo F. Cointe

Construction

JML

KENYA - Sols résiduels volcaniques - Pb des références labo

⁽A) Séchage préalable à l'air ou à l'étuve

Note 1: nombre de controles des couples w et Yd après compactage - Barrage initial : 1800 tests; Barrage surélevé: 1968: 1349 Note 2: % OPN des controles et teneur en air calculés à partir des valeurs étude qui sont en nombre limité

<u>Thika dam (H=70m) - 1994</u>

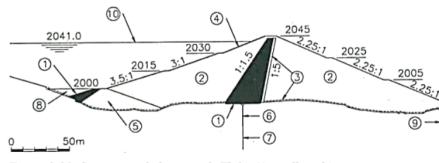


Figure 3-25. Coupe type du barrage de Thika (Attewill et al.).

Thika : Pressions interstitielles dans les recharges > prévisions des essais labo – Pb de références Proctor – Remède:

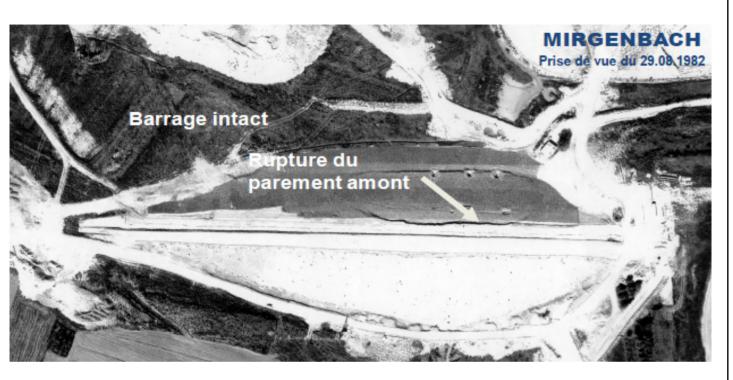
125 puits drainants prof 15m

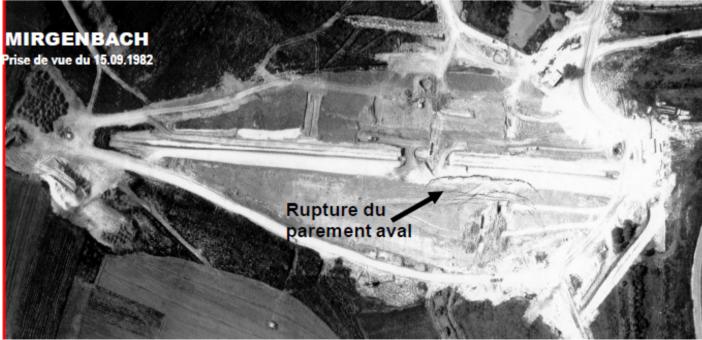
4 tapis drainants

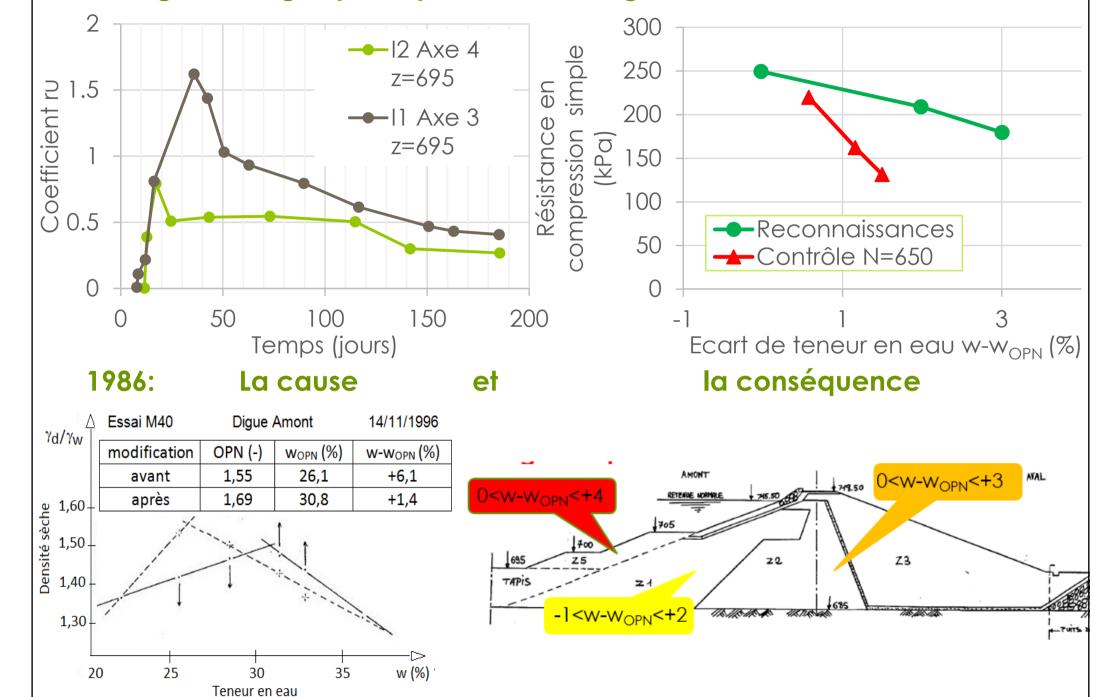
Berme amont

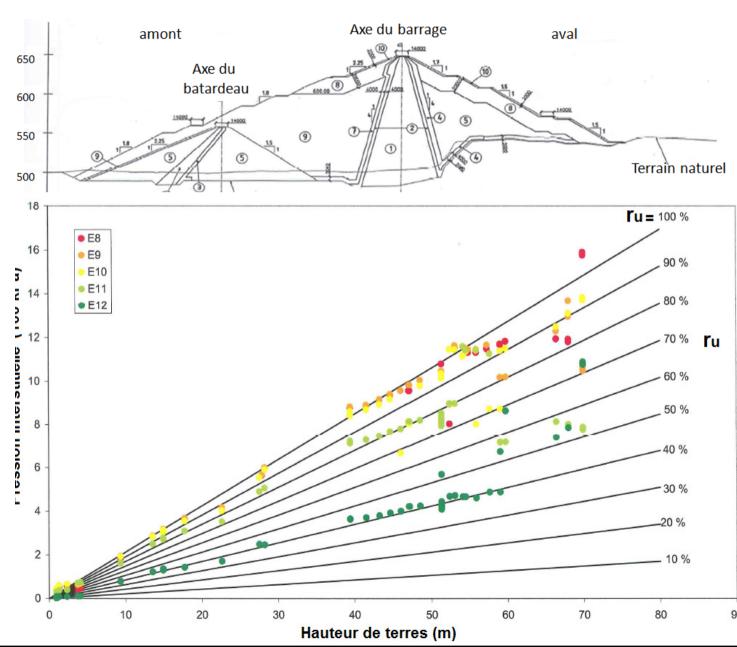
Non utilisation du contrôle en résistance non drainée « pour des raisons contractuelles »

Construction


⁽B) Pas de séchage préalable


Barrages en argile plastique humide: de MIRGENBACH, à La Mappé et Kol dam

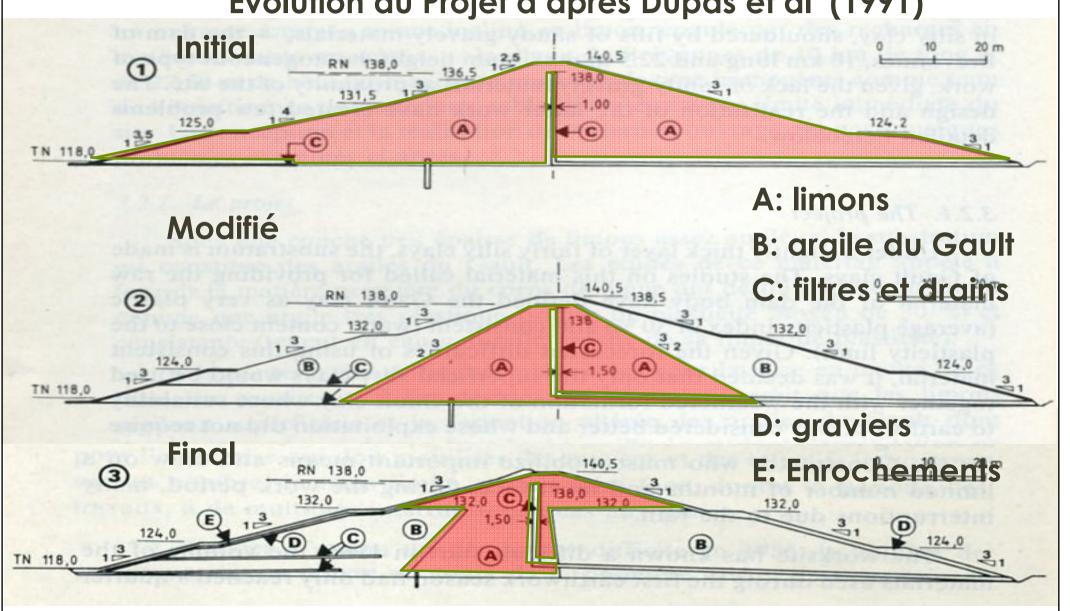



CONCEPTION ET CONSTRUCTION des ouvrages en sols fins fissures Positionnement des fissures dans les couches arrêt intercampagne Barrages en argile mises en place en septembre et octobre 1981 4ième semaine septembre 1981 plastique humide: Profil B 5ième semaine septembre 1981 1982 MIRGENBACH, La Mappé et Kol dam Les mesures refusées et reprises sont hors glissement Les mesures refusées dans la zone de glissement mesure acceptée 17/09-01/10/81 nombre mesure refusée 25/09-28/09/81 d'observations ■ mesure reprise 07/10-08/10/81 6 4 2 0 +2 (%) +1 O w-w_{opn} après reprise 4%>Wopn+3 😾 fréquence cumulée avant reprise 14%>Wopn+3 W-Wopn 2

Barrages en argile plastique humide: Mirgenbach, LA MAPPE et Kol dam

Barrages en argile plastique humide: Mirgenbach, La Mappé et KOL DAM

- Des cellules mesurent r_u=1! (mai-juin 2007)
- Causes:
 - Dérogation spec
 - Sr#100% trop fort
 - Mauvais calfatage
 - résurgences karstiques
- Une partie du noyau est mise en dépôt (482-497)
- Contrôle durci des spécifications w:
 - \circ -1 < w-w_{OPN}< +2%
 - Contrôle sur gîte
 - Contrôle sur site avant compactage
- Plus de problème ensuite ...



Barrages en marne et argile surconsolidée: du canal de la Durance (1962) au barrage réservoir AUBE (1989)

- 1962 Les marnes du canal de la Durance
 - o argile gréseuse au calcaire marneux Rc=0,6-2,7 MPa
 - Solution: concassage pour <5mm>50%, arrosage, pétrissage+12 passes RPD
- 1973 Le barrage réservoir Marne
 - Remblai homogène (abandon du limon trop humide, mais argile de Gault décapée en plaques réduites à la charrue)
 - Confortement suite aux Tassement > 5%, fissures longitudinales et glissements après pluies
- 1983 Le barrage de Montbel
 - o Marnes intacte, intermédiaire dure, intermédiaire tendre, tendre
 - Fragmentation au Tamping 835 avant arrosage
 - Un test d'imbibition de plusieurs mois montre montre que seules les marnes tendres sont utilisables
 - Zonage des marnes: à l'amont les plus tendres, à l'aval les plus dures
 - γd/OPN > la moyenne entre 100% et celui en place
- o 1989 Le barrage réservoir Aube
 - 1° Rex de Marne: profil zoné avec recharges en argile de Gault
 - o 2° Rex de Marne : Le limon protège l'argile en crête
 - o 3° Rex: **séchage industriel du limon** (12 hm³ extraits 6 mis en place; -2%/24H seulement 3 mois, sur une grande emprise Betoux 1986)

Barrages en marne et argile surconsolidée: du canal de la Durance (1962) au barrage réservoir AUBE (1989)

Evolution du Projet d'après Dupas et al (1991)

AUSCULTATION

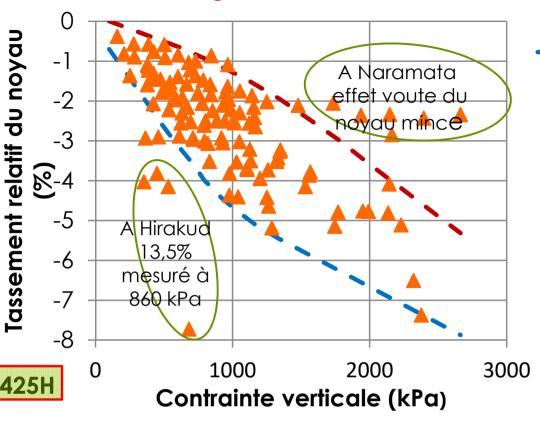
A-Tassements

Fell et Hunter (2003)

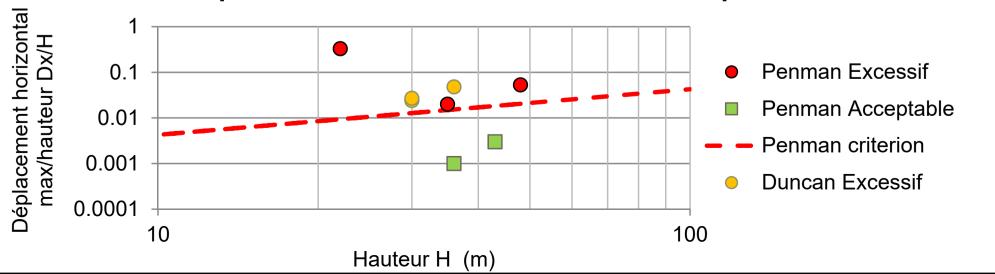
Module de compressibilité:

K=10-15 MPa argile plastique

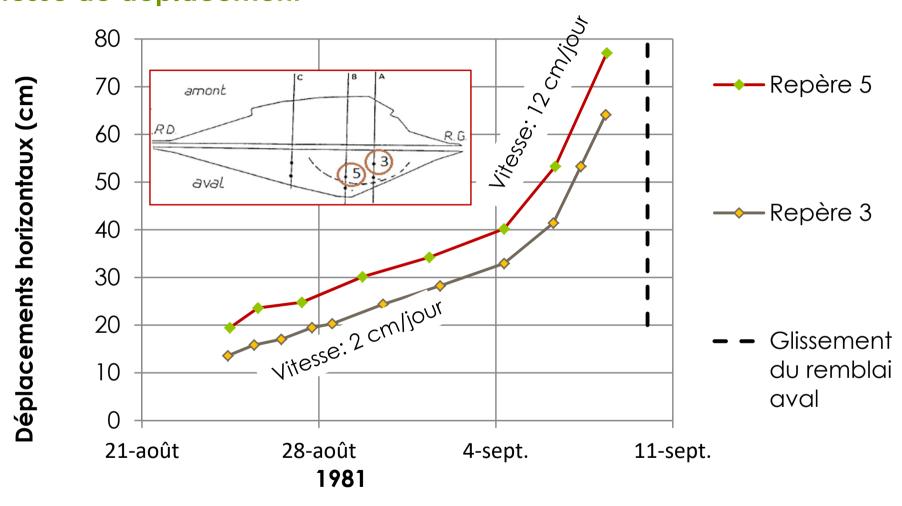
K=15-25 MPa argile peu plastique


K=80 MPa grave argileuse

B- Déplacements horizontaux


Penman et Charles (1982)

Walker et Duncan (1984)



Déplacement horizontal maximum acceptable

AUSCULTATION

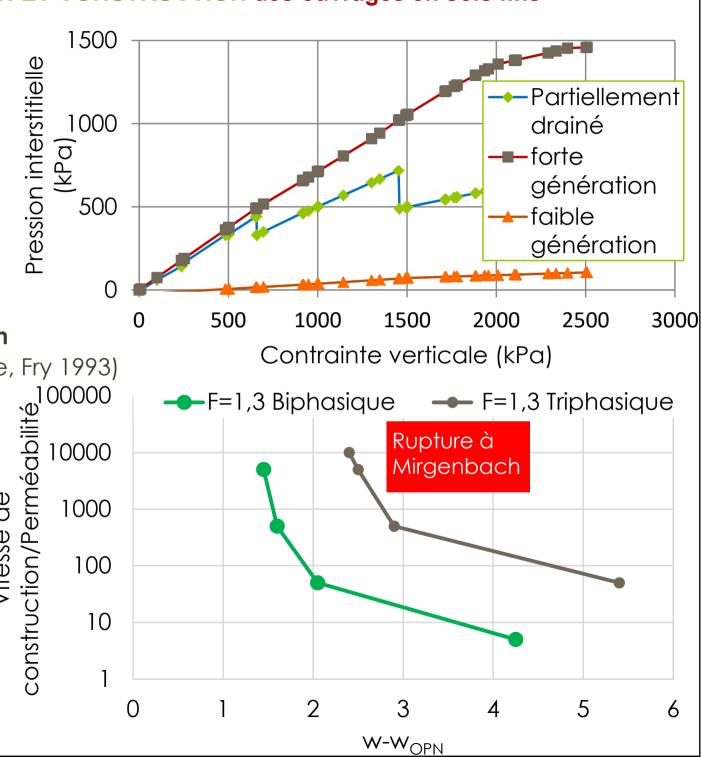
C- Vitesse de déplacement

• Critère de mise en sécurité: REX Mirgenbach

v=1cm/j

AUSCULTATION

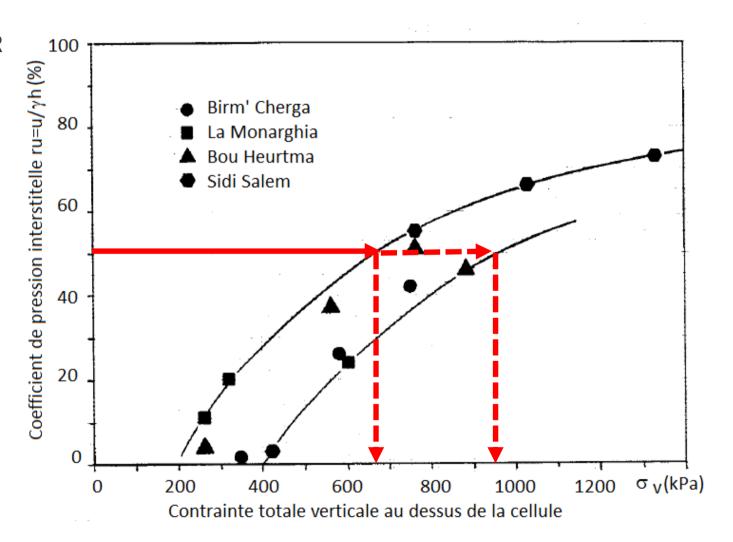
D - Pression interstitielle


- **EFFET DU DRAINAGE**
- Les 3 types de montée (Fell et Hunter 2003)

de

Vitesse

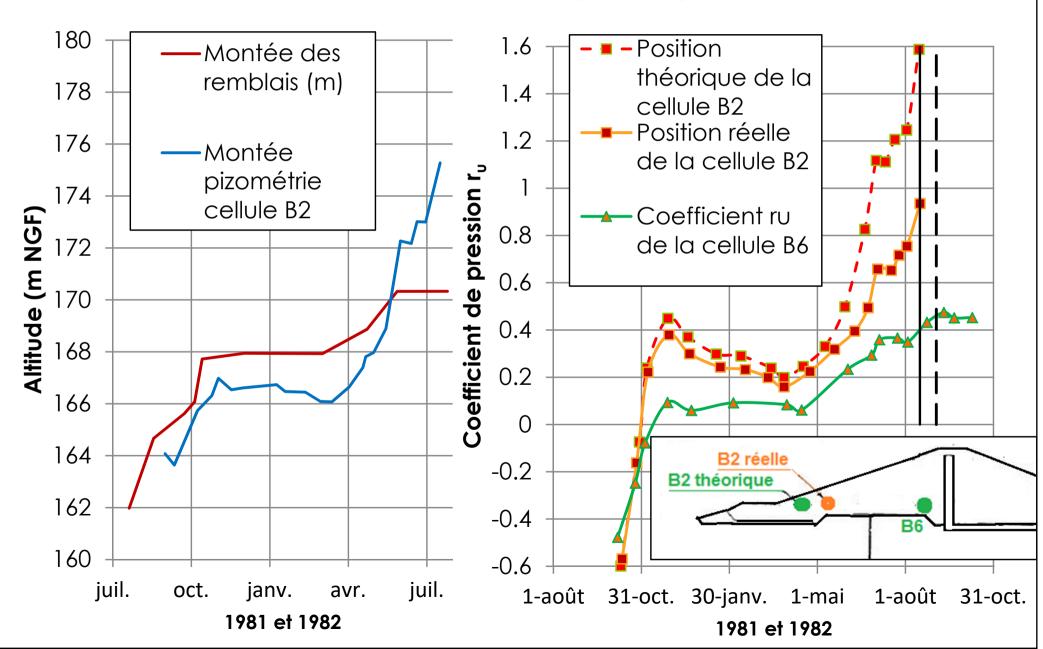
- V: vitesse construction
- K: perméabilité
- Θ_{α} : teneur en air
- Cas général:
- Non drainé:
- $V/(k/n_e) > 10$
- **Drainage:**
- $V/(k/n_e) < 0.1$ ne: porosité efficace



AUSCULTATION

D – Pression interstitielle

EFFET DE LA HAUTEUR


- Binquet (1986)
- -1<w-w_{OPN}<+2%

H > 30 m => ru>0,5 => risque d'instabilité

AUSCULTATION

D – Pression interstitielle • Doubler ou tripler les profils auscultés

AUSCULTATION E – Le Bon comportement du barrage de Monasavu Compacteur: bull au lieu RVP γd/OPN: 87% au lieu de 95% w-w_{OPN}: +18% au lieu de (-1,+2) Rockfil Rockfill Clay blanket σ_c : 170kPa au lieu de 270 kPa Rockfill K_{oedo}: **7 MPa** au lieu de 12 MPa Monzonite Monzonite 650 750-Key to instruments (exaggerated for clarity) (Blight 1982) Level (m) Hydraulic piezometer • 705 • 680 Hydraulic settlement cell Group of earth pressure cells (measuring in 3 directions) —Deformation tube 715 Piezometric Fill level Reservoir level 680 Hydraulic settlement cells 191 1981 1983 1982 Downstream rockfill 1983 0 - May 1981 (Mobilised angle of shearing Mar 198 Natural scale resistance) 730 $(\sigma_{v} - \sigma_{h})/2 (kN/m^{2})$ Effective Total Elevation (m) stresses stresses Settlement End of construction 50-Exaggerated Impounding vertical scale 680 complete upstream downstream 20 Distance from Dam ((m) Settlement (m) b) $(O_V' + O_h')/2$ and $(O_V + O_h)/2$ (kN/m²)

Ob=Horizontal stress

A - CONCLUSIONS: BARRAGES EN ARGILE SÉDIMENTAIRE/ALLUVIALE

- 1. Reconnaissances: mesurer la variabilité et les propriétés en place
 - O Vérifier les hypothèses du projet par prélèvement sur les planches d'essai
- 2. Conception: extrême prudence si IP > 27
 - O Phénomènes de rupture progressive
 - Les plans de cisaillement dus aux engins peuvent diviser par deux la résistance par perte de cohésion et baisse de l'angle de frottement opératif en masse
 - O Phénomènes de gonflement-retrait en l'absence de protection
- 3. Conception: extrême prudence dans les gites où $w > w_{OPN} + 2\%$
 - O Etude poussée de la faisabilité du séchage: séchage : si en 24h l'évapotranspiration > précipitation+0,3 mm avec calcul de surfaces de séchage
 - O Etude poussée et paramétrique des pressions d'eau et des résistances
 - Etude poussée du séchage
 - o Intégration d'un zonage des teneurs en eau
- 4. Conception: prudente : zonage et limitation de l'usage de ces argiles
- 5. Construction: homogénéisation (pulvimixer), séchage ou traitement
- 6. Auscultation: suivi impératif des pressions interstitielles de construction
- 7. Contrôle: à multiplier
 - O Vérifier en tranchée l'absence de feuilletage ou de surcompactage
 - o taux de compactage : méthode RAPIDE de Hilf + étuvage points Hilf à 24h
 - O Résistance non drainée: RCS avec mesure de déformation

O Sur remblai: Cohésimètre / Pénétromètres PANDA

JJF/JML

B - CONCLUSIONS BARRAGES EN SOLS RESIDUELS

1. Reconnaissances:

- O Privilégier les prélèvements manuels en puits ou tranchées (structure)
- O Coordonner et synchroniser les reconnaissances sur place
- O Toujours préparer les terres au voisinage des teneurs en eau naturelles (pas d'étuvage ou de séchage préalable excessif).
- O Vérifier les hypothèses du projet par prélèvement sur les planches d'essai

2. Conception avec des IP élevés:

- O Beaucoup moins problématique que pour les argiles sédimentaires: angle de frottement et perméabilité + grands
- O Usage validé si respect des points qui suivent

3. Conception: prudente ou audacieuse pour les gites où $w > w_{OPN} + 2\%$

- O Soit étude poussée de la faisabilité du séchage, des pressions d'eau, des résistances, de la stabilité et du zonage éventuel
- Soit compactage très humide au bull léger dans un noyau incliné protégé par des filtres inversés et tenu par des recharges en enrochements
- 4. Construction: (voir précédemment argile)
- 5. Auscultation: suivi impératif des pressions (voir argile)
- 6. Contrôle: à doubler et même à tripler (voir argile)

C - CONCLUSIONS BARRAGES EN MARNES ou SOLS SURCONSOLIDES

Reconnaissances:

- Préciser et identifier l'horizon exploitable dans le faciès d'altération
- O Réaliser des essais d'imbibition longue durée
- Etudier le gonflement et retrait

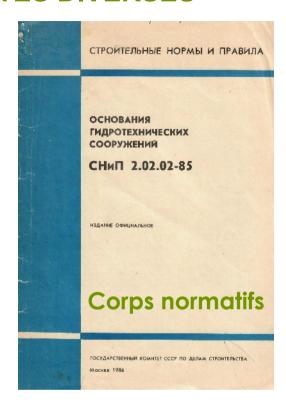
2. Conception:

- Protéger les marnes du gonflement et du retrait
- O Usage validé si respect des points qui suivent

3. Construction

- O Utiliser le pulvimixer sur site et éventuellement sur gîte pour homogénéiser la plasticité et l'humidité
- Humidifier par asperseur bien à l'avance
- O Compacter à la moyenne de 100% et du taux en place

4. Conception: prudente (voir argile)


- 5. Auscultation: suivi impératif des pressions et des déplacements dans le temps
- 6. Contrôles: à multiplier
 - O Vérifier visuellement l'absence de vides et de feuilletage
 - o taux de compactage : méthode RAPIDE de Hilf + Proctor à 24h
 - O Sur remblai: Cohésimètre / Pénétromètres PANDA

BARRAGES – ETUDES ET TRAVAUX- DIFFICULTES DIVERSES

Multiplicité des intervenants. Eclatement des taches. Communication. Conditions contractuelles. Montages financiers.

Conditions of Contract for **Construction**

FOR BUILDING AND ENGINEERING WORKS DESIGNED BY THE EMPLOYER

Compliquent la vision globale et freinent les prises de décision rapides nécessitées par les difficultés et imprévus géologiques et géotechniques

Construction JML

