Journée technique CFBR – CFMS – SPTF FNTP du 16 mai 2019

23 Avenue Condorcet, Villeurbanne

La microstructure des sols fins compactés

Pierre Delage, Ecole des Ponts ParisTech

Journée organisée par :

CONCEPTION ET CONSTRUCTION des ouvrages en sols fins

Les sols compactés sont non saturés

2 Delage & Cui 2000

Les sols compactés sont non saturés

Succion :
$$s = u_a - u_w = \frac{2\sigma\cos\theta}{r}$$
 Eau
 $\sigma = 72,75 \times 10^{-3} \text{ N/m}$
 $\theta = 0^{\circ}$

Delage & Cui 2000

3

Les sols compactés sont des sols fins

Delage & Cui 2000

4

Perméabilités eau/air en non saturé

Début de désaturation : entrée d'air

Désaturation d'un sable argileux

Désaturation d'un sable argileux

Sol non saturé naturel

Loess de Picardie I_p = 9

Grains propres, arrondi .

Gros pore entre grains propres, 30 µm, empli d'air à l'état naturel Pression d'entrée d'air

Remplissage d'agrégats argileux (saturé) entre les grains

Courbe de rétention d'eau du loess $(I_p = 9)$

14 Fleureau et al. 1993

15

16 Fleureau et al. 1993

Limites d'Atterberg

Minéralogie des argiles

Particules instables Surface spécifique accessible 700 m²/g Théorie de la double couche (±

spécifique/w

Mitchell & Soga 2005

Effet de la plasticité (adsorption eau-argile)

Courbes de rétention / I_p

Courbes de rétention / I_p

Barbour 1998

Sols compactés (Lambe 1958)

Lambe 1958

Sols compactés (Lambe 1958)

Lambe 1958

Limon de Jossigny compacté (I_p = 18%, 34% < 2 µm)

Microstructure limon de Jossigny côté sec

Microstructure limon de Jossigny côté sec

Microstructure limon de Jossigny côté sec

Delage et al. 1996

Microstructure limon de Jossigny côté humide

Microstructure limon de Jossigny côté humide

Delage et al. 1996

Microstructure limon de Jossigny à l'optimum

Microstructure limon de Jossigny compacté

Isovaleurs de succion, loess compacté ($I_p = 10$)

Compression du côté sec

Argile de Boom compactée ($I_p = 40$)

Courbe de rétention de l'argile de Boom ($I_p = 40$)

Du laboratoire au chantier (!)

- Changement d'échelle
- Mêmes principes
- Agrégat : motte, déformabilité variable
- Variabilité
 - Composition
 - Teneur en eau
 - Densité

Des agrégats aux mottes

Du laboratoire au chantier

39 Cabot @ Le Bihan 1993

FIG. 1. Évolution de la texture de l'argile en cours de compactage.

Du laboratoire au chantier

Du laboratoire au chantier (Cabot & Le Bihan)

FIG. 1. Évolution de la texture de l'argile en cours de compactage.

Du laboratoire au chantier (Cabot & Le Bihan)

42

Conclusions

Sols compactés : sols non saturés

Succion, pression d'entrée d'air, rétention d'eau (transferts eau/air)

Interactions sol / eau : capillarité, adsorption

Forte sensibilité à la teneur en eau

3 types de microstructure (agrégats/mottes de diverses rigidités) / teneur en eau

Fort effet sur la perméabilité et les transferts

Phase air continue/discontinue

References

Barbour S. L. 1998. The soil-water characteristic curve: a historical perspective. Canadian Geotechnical Journal 35, 873-894 Black W.P.M. 1962. A method for estimating the California Bearing Ratio of cohesive soils from plasticity data. Géotechnique 12, 271-282. Cabot L. & Le Bihan J.P. 1993. Quelques propriétés d'une argile sur la « ligne optimale de compactage ». Canadian Geotechnical Journal 30, 1033 -1040.Childs E.C. 1969. An introduction to the physical basis of soil water phenomena. Wiley-Interscience, London. Benson C.H., & Daniel D.E. 1990. Influence of clods on hydraulic conductivity of compacted clay. Journal of Geotechnical Engineering (116) 8, 1231 - 1248. Delage P. & Graham J. 1996. Mechanical behaviour of unsaturated soils. Proc. 1st Int. Conf. on Unsaturated Soils UNSAT' 95 (3), 1223-1256, Paris Delage P., Audiquier M., Cui Y.J. & Howat M.D. 1996. Microstructure of a compacted silt. Canadian Geotechnical Journal, 33 (1), 150-158. Delage P. & Cui Y. J. 2000. L'eau dans les sols non saturés. Techniques de l'Ingénieur, art. C 301. Fleureau J.M., Kheirbek-Saoud S., Soemitro R. & Taïbi S. 1993. Behaviour of clayey soils on drying-wetting paths. Canadian Geotechnical Journal 30 (2): 287-296. Fredlund, D. G., Rahardjo, H., & Fredlund, M. D. (2013). Unsaturated soil mechanics in engineering practice. Wiley, New York. Gens A. Alonso E.E. Suriol J. & Lloret A. 1995. Effect of structure on the volumetric behaviour of a compacted soil. Proc. 1st Int. Conf on Unsaturated Soils UNSAT' 95 1, 83-88, Paris. Lambe T.W 1958. The engineering behavior of compacted clay. Journal of the Soil Mech. Found. Div., ASCE SM2, 1655 1 – 35. Li Z.M. 1995. Compressibility and collapsibility of compacted unsaturated loessial soils. Proc. 1st Int. Conf on Unsaturated Soils UNSAT' 95 1, 139-144, Paris Mitchell J.K. and Soga K. Fundamentals of soil behavior, Wiley, New-York. Muñoz-Castelblanco J., Pereira J.M., Delage P. and Cui Y.J. 2012. The water retention properties of a natural unsaturated loess from Northern France. Géotechnique 62 (2), 95-106. Romero E., Gens A. & Lloret A. 1999. Water permeability, water retention and microstructure of unsaturated compacted Boom clay. Engineering Geology. 54, 117-127. Sridaran A., Altschaeffl A.G. and Diamond S. 1971. Pore size distribution studies. Journal of the Soil Mech. Found. Div., ASCE, 771 – 787.

