

Journée Scientifique et Technique - 3 avril 2019

A la frontière entre géotechnique et parasismique

Etude expérimentale en centrifugeuse du comportement d'un groupe de pieux sous séisme

Jesús Pérez Herreros (Terrasol/ECN/IFSTTAR)

Encadrement: S. Escoffier (IFSTTAR), P. Kotronis (ECN) et F. Cuira (Terrasol)

Réponse dynamique d'une structure supportée par des fondations profondes → **problème complexe d'Interaction Sol-Structure** (ISS)

Traditionnellement: **études/dimensionnement limités au cas des problèmes linéaires** et de préférence approches linéaires équivalents

Nouveaux codes (ex. EC8): reconnaissent désormais **l'effet d'ISS et des mécanismes non-linéaires de dissipation d'énergie**

Intérêt grandissant pour **modéliser** le comportement non-linéaire des fondations sous séisme

STTAR

Développement de **nouvelles approches de calcul permettant de prendre en compte ces phénomènes**

2

(ex. projets de recherche récents, Recommandations AFPS2020)

Contexte de l'étude

• Thèse CIFRE

« Comportement sismique des fondations: vers l'introduction d'un aspect fréquentiel dans l'outil macroélément pour les fondations profondes »

- **Objectif**: introduire l'effet de groupe et de la fréquence dans l'outil macroélément pour les fondations profondes sous sollicitations dynamiques (Correia *et al*. 2012, Li *et al*. 2016)
- Approche couplée expérimentale/numérique

Pourquoi faire de la modélisation physique en centrifugeuse?

- Le comportement des sols est fonction de **l'histoire et du niveau de contraintes** auxquelles ils sont soumis.
- Reproduire le même état de contraintes est donc une **condition nécessaire** pour que les modèles réduits simulent le comportement réel de l'ouvrage en vraie grandeur.
- La modélisation en centrifugeuse permet d'obtenir ce résultat en augmentant à volonté les forces de masse dans le modèle.

Vidéo centrifugeuse en fonctionnement

- Ouvrage réel: $\sigma_v = \rho \ g \ z$
- Modèle réduit au 1/N <u>non centrifugé</u> $\sigma_v = \rho g (z/N)$
- Modèle réduit au 1/N <u>centrifugé à Ng</u> $\sigma_v = \rho (Ng) (z/N) = \rho g z$

Pourquoi faire de la modélisation physique en centrifugeuse?

- Le comportement des sols est fonction de **l'histoire et du niveau de contraintes** auxquelles ils sont soumis.
- Reproduire le même état de contraintes est donc une **condition nécessaire** pour que les modèles réduits simulent le comportement réel de l'ouvrage en vraie grandeur.
- La modélisation en centrifugeuse permet d'obtenir ce résultat en augmentant à volonté les forces de masse dans le modèle.

latérale

Simulateur de séismes embarqué

• Permet d'appliquer des sinusoïdes et des séismes réels à la base du modèle (prise en compte des effets inertiels et cinématiques)

Conteneur ESB (équivalent shear beam)

 Conditions aux limites semblables à celles d'une colonne de sol (champ libre)

CENTRALE

FSTTAR

Conditions de similitude et facteurs d'échelle

- Similitude de comportement modèle réduit/ouvrage en vraie grandeur → rapports constants (facteurs d'échelle) entre les variables au niveau modèle réduit et celles décrivant le système prototype.
- Analyse dimensionnelle appliquée aux équations de la mécanique → relations entre les différents facteurs d'échelle (Schofield 1981, Schofield et Steedman 1988, Garnier 2001, etc.)

CENTRALE

FSTTAR

Grandeur physique	Facteur d'échelle	Unité SI
Déplacement, longueur	1/N	m
Vitesse	1	m/s
Accélération	N	m/s ²
Masse volumique	1	kg/m ³
Masse	1/N ³	kg
Pression, contrainte	1	Pa (N/m^2)
Déformation	1	-
Force	$1/N^2$	Ν
Moment	1/N ³	N/m
Rigidité à la flexion (EI)	1/N ⁴	N.m ²
Module de déformation	1	N/m ²
Temps (problème de dynamique)	1/N	S
Temps (problème de diffusion)	$1/N^2$	S
Fréquence	N	Hz (1/s)
Energie	1/N ³	J

Présentation de l'étude expérimentale en centrifugeuse

- Autres avantages de la modélisation en centrifugeuse:
 - Prise en compte de la **réponse non-linéaire** du sol dans les simulations;
 - Réalisation d'études paramétriques → observer impact de certains paramètres dans la réponse: type de fondation, fréquence de sollicitation, type de sol, stratigraphie, etc.;
 - Accès aux grandeurs physiques couramment mesurées sur les ouvrages réels grâce à des capteurs adaptés: déplacement, rotation, déformation, pression, accélération, température...
- Une série d'essais expérimentaux en centrifugeuse:
 - incrémenter la base de données existante:
 - peu d'études expérimentales sur le comportement des pieux dans des sols argileux et des profils stratifiés et soumis à des chargements sismiques (Meymand 1998, Wang *et al.* 1998, Wilson 1998, Boulanger *et al.* 1999, Banerjee 2009, Zhang *et al.* 2017, Taghavi *et al.* 2017);
 - support au développement des nouvelles normes et recommandations de calcul;
 - valider les modèles numériques.

FSTTAR

Nota: tous les tests on été réduits au 1/50^{ème} et testés sous 50g (N=50)

Essais dynamiques: groupe de 5 pieux avec superstructure courte

terraso

Journée scientifique et technique CFMS Jeunes - Groupe Jeunes AFPS – 3 avril 2019

Essais dynamiques: groupe de 5 pieux avec superstructure haute

terraso

Photos montage essais dynamiques

Photos montage essais dynamiques

terrasol

Reproductibilité des profils de sol

CENTRALE

setec

terraso

• Mesures bender avant le premier tir \rightarrow valeurs de V_s avec « *First arrival method* » \rightarrow identification visuelle (Mitaritonna *et al.* 2010)

Signaux appliqués

Deux types: - séismes réels large spectre (Landers 1992, Northridge 1994)
- sinus 1, 1.8, 2.4 et 3.2 Hz

• Ordre d'application

	PGA (g)	PGV (cm/s)	PGD (cm)	Arias Intensity (m/s)
Northridge	0.05	3.66	0.463	0.025
Landers	0.05	5.097	1.062	0.031
Northridge	0.3	3 21.958	2.777	0.897
Landers	0.3	30.582	6.37	1.109
Sine 1Hz	0.1	15.663	2.851	1.417
Sine 3.2Hz	0.1	4.873	0.277	0.443
Sine 1.8Hz	0.1	8.692	0.879	0.787
Sine 2.4Hz	0.4	l 6.499	0.493	0.588
Sine 1Hz	0.3	46.989	8.553	12.76
Sine 3.2Hz	0.3	3 14.618	0.832	3.986
Sine 1.8Hz	0.3	3 26.076	2.637	7.087
Sine 2.4Hz	0.3	3 19.496	1.479	5.295
Northridge	0.05	5 3.66	0.463	0.025
Landers	0.05	5.097	1.062	0.031

Vidéo de l'évolution temporelle du profil des moments

Effets cinématiques vs effets inertiels

- Comparaison entre les courbes enveloppes des profiles des moments:
 - pieu central dans groupe de 5 pieux: tests C07 et C08
 - pieu isolé sans masse en tête: test C04 (Pérez-Herreros et al. 2017)

terraso

- L'interaction inertielle joue un rôle important sur les premiers 11 m
- C08: effets cinématiques et inertiels → peuvent interagir → évolution complexe de la réponse du système avec le temps

Conclusions

- Reproductibilité satisfaisante du profil de sol (différences en termes de *V_s* inférieures à 6.4%) malgré la complexité de fabrication;
- Les moments dus à l'encastrement des pieux en pointe ne sont pas négligeables;
- Les moments maximaux enregistrés sur les différentes parties des pieux ne sont pas atteints simultanément au cours du chargement;
- Les effets de type cinématique et inertiel peuvent interagir ente eux et donner lieu à des évolutions complexes de la réponse du système avec le temps.

Références

- Banerjee, S. 2009. Centrifuge and numerical modelling of soft clay-pile-raft foundations subjected to seismic shaking. Ph.D. thesis, National University of Singapore.
- Boulanger, R.W., Curras, C.J., Kutter, B.L., Wilson, D.W. & Abghari, A. 1999. Seismic soil-pile-structure interaction experiments and analyses. Journal of Geotechnical and Geoenvironmental Engineering, 125, 750-759.
- Correia, A., Pecker, A., Kramer, S. & Pinho, R. 2012. Nonlinear pile-head macro-element model: SSI effects on the seismic response of a monoshaft-supported bridge. 15 WCEE, Lisboa.
- Garnier, J. 2001. Modèles physiques en géotechnique: Etat des connaissances et avancées récentes. Première Conférence Coulomb.
- Li, Z., Kotronis, P., Escoffier, S. & Tamagnini, C. 2016. A hypoplastic macroelement for single vertical piles in sand subject to threedimensional loading conditions. Acta Geotechnica, 11, 373-390.
- Meymand, P. J. 1998. Shaking table scale model tests of non-linear soil-pile-superstructure interaction in soft clay. Ph.D. University of California, Berkeley.
- Mitaritonna, G., Amorosi, A. & Cotecchia, F. 2010. Multidirectional bender element measurements in the triaxial cell: equipment set-up and signal interpretation. Rivista Italiana di Geotecnica, 44, 50-69.
- Pérez-Herreros, J., Escoffier, S., Kotronis, P. & Cuira, F. 2018. Kinematic interaction of piles under seismic loading. 9th ICPMG, London.
- Schofield, A.N. 1981. Dynamic and earthquake centrifuge modelling. Proc. of international conference on advances in geotechnical earthquake engineering and soil dynamics, pp. 1081–1100.
- Schofield, A.N. & Steedman, R.S. 1988. Recent development of dynamic model testing in geotechnical engineering. Proc. 9th World Conf. Earthquake Engng, Tokyo-Kyoto.
- Taghavi, A., Muraleetharan, K.K. & Miller, G.A. 2017. Nonlinear seismic behavior of pile groups in cement-improved soft clay. Soil Dynamics and Earthquake Engineering, 99, 189-202.
- Wang, S., Kutter, B.L., Chacko, M.J., Wilson, D.W., Boulanger, R.W. & Abghari, A. 1998. Nonlinear Seismic Soil-Pile Structure Interaction. Earthquake Spectra, 14, 377-396.
- Wilson, D.W. 1998. Soil-pile-superstructure interaction in liquefying sand and soft clay. Ph.D. thesis, University of California, Davis.

Zhang, L., Goh, S.H. & Yi, J. 2017. A centrifuge study of the seismic response of pile - raft systems embedded in soft clay. Géotechnique, 67, 479-490.

