

Journée Scientifique & Technique du 25 octobre 2018 CNAM, 292 rue Saint-Martin 75003 Paris, Amphi J-B Say

Microstructure des géomatériaux argileux – conséquences pour l'ingénieur

Microstructure des sols et roches argileux gonflants Cas des sols de la région parisienne

Pierre Delage

Ecole des Ponts ParisTech, Laboratoire Navier/CERMES, France

En lien avec les travaux du Groupe de travail CFMS : « Prise en compte du gonflement des terrains argileux pour le dimensionnement des ouvrages d'infrastructure » (Animation H. Le Bissonais et J.F. Serratrice)

Qu'est-ce qu'un sol gonflant ?

- Montmorillonite (smectites) dans la fraction argileuse (autres sources de gonflement possibles, non considérées ici : gypse, anhydrite,...)

- Surconsolidé (région parisienne) et plastique

Quand est-ce qu'un sol gonfle ?

En équilibre à l'état initial sous contrainte en place, les sols gonflants ne gonflent pas.

Gonflement dû à un :

- Changement de l'état de contrainte (excavation, creusement,...), plutôt rapide
- Avec apport d'eau,
 - différé (faible perméabilité du sol)
 - rapide (apport accidentel)

Construction des ouvrages

- radiers
- paroi moulées (?)

Maisons individuelles et sécheresse : rétraction - gonflement (même type de sols)

Source : ©BRGM, 2013. Traitements : SoeS, 2013

Région parisienne (Essonne)

N° ordre	Notation	Nom de la formation lithologique	Note	Note minéralogique	Note géotechnique	Note finale	Degré de susceptibilité			École des ParisT
1	C/g1SF	Colluvions sur Sables de Fontainebleau	2	_	2	2,00	Faible			
2	CF	Colluvions de versants et de fonds de vallons	2	-	3	2,50	Moyen			
3	CE	Colluvions polygéniques	3	-	3	3,00	Moyen			
4	LP	Limons des plateaux	2	2	2	2,00	Faible			
5	Rfv/g1CB	Argiles à meulière de Brie	3	3	3	3,00	Moyen			
6	p-IVMM	Argiles à meulière de Montmorency	3	2	3	2,67	Moyen			
7	Т	Dépôts tourbeux	3	_	2	2,50	Moyen			
8	Fz	Alluvions récentes	2	1	2	1,67	Faible			
9	Fv-w-x-y	Alluvions anciennes	1	1	1	1,00	Faible			
10	PL	Sable de Lozère	2	2	3	2,33	Moyen			
11	m1MG	Molasse du Gâtinais	3	3	3	3,00	Moyen			
12	g1MH	Marnes à huîtres	4	3	3	3,33	Fort			
13	g1CB	Calcaire de Brie et Argiles à meulière de Brie	2	2	2	2,00	Faible			
14	g1AR	Glaises à Cyrènes et Argile verte de Romainville	4	4	4	4,00	Fort		_	
15	e7MC	Marnes ludiennes (faciès de transition)	A	Thès	se Ze	men	u (200	9)		
16	e7MS	Marnes supragypseuses	4 ^L	3	ა	ა,აა	, FUL	,		
17	e7G	Marnes associées aux masses du gypse et Calcaire de Champigny	2	3	3	2,67	Moyen			
18	e4SG	Sables et grès de Breuillet		es ar	giles	plasi	tiques	de l'Ypr	résien et	leur
19	e4APS	Argile plastique et argiles sableuses de l'Yprésien	Co B	ompc ergèi	rtem re et	ent c Rope	apricie ers, JN	eux, IGG 201	18	
20	e2CrBE	Marnes de Meudon	1	3	2	2,00	Faible			
21	RC	Argile à silex et craie blanche à silex	3	3	3	3.00	Moven			

Carrières de gypse de Cormeilles en Parisis

Kaolinite

D'après Mitchell and Soga (2005)

Smectite (montmorillonite) : 1 octa et 2 tétra

D'après Mitchell and Soga (2005)

Assemblage fixe, mica analogue (muscovite)

D'après Mitchell and Soga (2005)

Analyses minéralogiques (Zemenu 2009)

- Argile verte de Romainville
 - Illite : +++ (très abondant) 25%
 - Kaolinite : ++ (abondant) 10%
 - Smectite et interstratifiés illite/smectite : ++ 18%
 - Carbonates : 9 22%
- Marne bleue d'Argenteuil
 - Illite : +++
 - Kaolinite : +
 - Smectite et interstratifiés illite/smectite : ++
 - Carbonates : 20 64%

Argile de Romainville : microstructure

Zemenu 2009

Mécanismes de gonflement

- Cristallin : intra particulaire
- Osmotique : inter particulaire

Hydratation d'une montmorillonite compactée MX80

Gonflement cristallin, intra-particulaire

D'après Sayiouri, Tessier and Hicher 2004

Gonflement cristallin

D'après Sayiouri, Tessier and Hicher 2004

Gonflement cristallin

D'après Sayiouri, Tessier and Hicher 2004

Gonflement cristallin

D'après Sayiouri, Tessier and Hicher 2004

Gonflement cristallin : extension aux contraintes

D'après Sayiouri, Tessier and Hicher 2004

Gonflement inter-particulaire : théorie de la double couche

Distribution des anions et cations à proximité de la plaquette Répulsion électrique, distances 100 – 800 Å (plus grandes)

Distribution de la concentration des cations

« Epaisseur » de la double couche

$$x = \sqrt{\frac{DkT}{8\pi n_0 \varepsilon^2 v^2}}$$
(5)

- avec D la permittivité relative (constante diélectrique) du milieu,
 - k la constante de Boltzmann ($k = 1,38 \times 10^{-23} \text{ J/K}$),
 - T la température thermodynamique,
 - n₀ une concentration ionique de référence, en un point loin de l'argile,
 - ε la charge électronique élémentaire ($\varepsilon = 1,6 \times 10^{-19}$ C),
 - v la valence des cations.

Effet de sels sur l'épaisseur de la double couche

Mitchell and Soga (2005)

Effet du gonflement : argile de Romainville

Etat naturel, (w = 29,8%)

Essais de gonflement : essais parallèles

Justo et al. (1984), in Alonso et al. (1987)

École des Ponts ParisTech

Essais de gonflement - compression

Essais de gonflement à volume constant

Justo et al. (1984), in Alonso et al. (1987)

ParisTech

Essais de gonflement sur sols naturels : problèmes

(Bergère et Ropers 2018) Éc

- École des Ponts ParisTech
- Délai de réalisation après extraction (6 mois Piètre conservation des carottes
 - zones remaniées
 - échantillons sans paraffine aux extrémités
 - échantillons ayant gonflé dans la gaine
- Essais triaxiaux
 - Longue période de consolidation / délais contractuels
 - Gonflement sous saturation (50 kPa), adoption de la contrainte en place
 - Faible perméabilité (consolidation primaire incomplète)
 - Avec diamètre 50 mm : consolidation de 170h ($I_p = 33$) et 224h ($I_p = 50$)
 - Qualité du drainage ?

Potentiel de gonflement, Daksanamurthy et Raman (1973)

Conclusion

- De nombreux niveaux de sols gonflants dans le bassin parisien
- En équilibre à l'état naturel
- Gonflement : changement état de contrainte + apport d'eau
- Impact sur les infrastructures en construction (groupe CFMS) ?
 - Radier : à prendre en compte
 - Soutènements : probablement pas
- Minéralogie
- Mécanismes de gonflement
 - Cristallin (nW)
 - Inter-particulaire (double couche)
- Caractérisation du gonflement
 - Pression de gonflement ?
 - Qualité des éprouvettes
 - Qualité de la pratique des essais
 - Corrélation avec les paramètres
- Variabilité naturelle
- Hydrogéologie locale

Argilite du Callovo-Oxfordien, Bure, profondeur 490 m

Effet du gonflement

Grains arrachés pendant la fracture à l'état congelé (25% calcite, 20% quartz)

