Amélioration et renforcement des sols

ISSMGE TC211 Ground Improvement

Report on the recent and upcoming TC211 activities

Noël Huybrechts, BBRI & KU Leuven, Chairman Jérôme Racinais, Menard, Vice-Chairman Nicolas Denies, BBRI, Secretary

1. TC211 Workshop in Edinburgh (September 15th 2015) – Progress in QC/QA for GI works

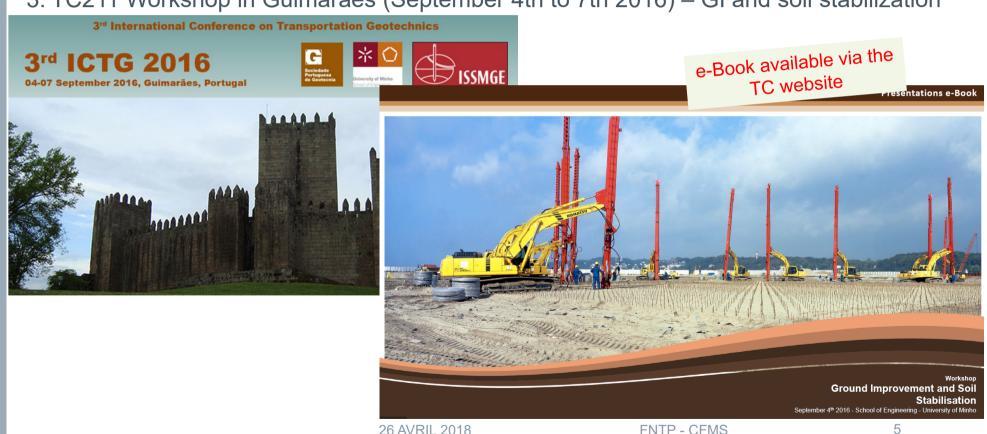
- 1. TC211 Workshop in Edinburgh (September 15th 2015) Progress in QC/QA for GI works
- 2. TC211 Workshop in Kuala Lumpur (May 31th to June 3 2016) GI works

AGSSEA

19TH SOUTHEAST ASIAN GEOTECHNICAL CONFERENCE & 2ND AGSSEA CONFERENCE

Deep Excavation and Ground Improvement

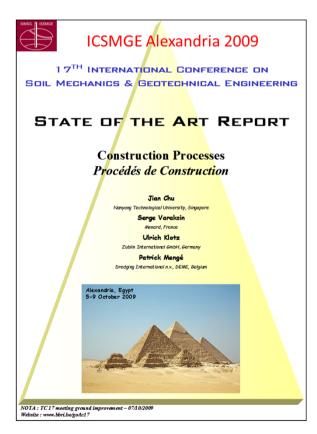
31 May - 3 June 2016


Dorsett Grand Subang, Subang Jaya, Malaysia

- 1. TC211 Workshop in Edinburgh (September 15th 2015) Progress in QC/QA for GI works
- 2. TC211 Workshop in Kuala Lumpur (May 31th to June 3 2016) GI works
 - 1. Development of Deep Soil Mixing Technique for Earth Retention in Malaysia by Raju V.R. et al.
 - 2. Artificial Ground Freezing to Remediate the Construction of a Shaft of a Water Supply System in Bueno Aires, Argentina by Lancellotta G. et al.
 - 3. Lightweight Fill to Reduce Settlement on Bridge Approach Embankments Treated with Vibro Stones Columns by Chwee A.Y.L. and E.G. Balakrishnan
 - 4. Design and Construction of Ground Improvements to Mitigate Liquefaction, a Case History from MacKays to Peka Peka Expressway, New Zealand by Robins, P and T. Pervan
 - 5. Pilot tests on methods to form working platform on very soft clay by Guo W.
 - 6. Ground Improvement for Tanks by Hamidi B. and S. Varaksin
 - 7. Recent Advancements in the Application of Vaccuum Pressure for Consolidating Soft Soil by Zhong R., Indraratna B. and C. Rujikiatkamjorn
 - 8. Twenty years of CMC successful application by Racinais J., Thomas B. and R. Ong

To purchase the proceedings of the 19th Southeast Asian Geotechnical Conference, kindly email to andrita@iemasb.com or serena@iem.org.my

Presentations available on the TC website


- 1. TC211 Workshop in Edinburgh (September 15th 2015) Progress in QC/QA for GI works
- 2. TC211 Workshop in Kuala Lumpur (May 31th to June 3 2016) GI works
- 3. TC211 Workshop in Guimarães (September 4th to 7th 2016) GI and soil stabilization

- 1. TC211 Workshop in Edinburgh (September 15th 2015) Progress in QC/QA for GI works
- 2. TC211 Workshop in Kuala Lumpur (May 31th to June 3 2016) GI works
- 3. TC211 Workshop in Guimarães (September 4th to 7th 2016) GI and soil stabilization
- 4. TC211 ACTIVITIES IN SEOUL 2017

- 4. TC211 ACTIVITIES IN SEQUE 2017
- Organization of 4 Discussion Sessions

Category	Method	Principle	
	A1. Dynamic compaction	Densification of granular soil by dropping a heavy weight from air onto ground.	
A. Ground	A2. Vibrocompaction	Densification of granular soil using a vibratory probe inserted into ground.	
improvement without	A3. Explosive compaction	Shock waves and vibrations are generated by blasting to cause granular soil groun to settle through liquefaction or compaction.	
admixtures in non-cohesive	A4. Electric pulse compaction	Densification of granular soil using the shock waves and energy generated be electric pulse under ultra-high voltage.	
soils or fill materials	A5. Surface compaction (including rapid impact compaction).	Compaction of fill or ground at the surface or shallow depth using a variety compaction machines.	
	B1. Replacement/displacement (including load reduction using light weight materials)	Remove bad soil by excavation or displacement and replace it by good soil or rock Some light weight materials may be used as backfill to reduce the load or eart pressure.	
B. Ground improvement without admixtures in cohesive soils (also see Table 4)	B2. Preloading using fill (including the use of vertical drains)	Fill is applied and removed to pre-consolidate compressible soil so that is compressibility will be much reduced when future loads are applied.	
	B3. Preloading using vacuum (including combined fill and vacuum)	Vacuum pressure of up to 90 kPa is used to pre-consolidate compressible soil so th its compressibility will be much reduced when future loads are applied.	
	B4. Dynamic consolidation with enhanced drainage (including the use of vacuum)	Similar to dynamic compaction except vertical or horizontal drains (or together wi vacuum) are used to dissipate pore pressures generated in soil during compaction.	
	B5. Electro-osmosis or electro-kinetic consolidation	DC current causes water in soil or solutions to flow from anodes to cathodes which are installed in soil.	
	B6. Thermal stabilisation using heating or freezing	Change the physical or mechanical properties of soil permanently or temporarily beating or freezing the soil.	
	B7. Hydro-blasting compaction	Collapsible soil (loess) is compacted by a combined wetting and deep explosion action along a borehole.	
C. Ground improvement with admixtures or inclusions	C1. Vibro replacement or stone columns	Hole jetted into soft, fine-grained soil and back filled with densely compacted grav or sand to form columns.	
	C2. Dynamic replacement	Aggregates are driven into soil by high energy dynamic impact to form column. The backfill can be either sand, gravel, stones or demolition debris.	
	C3. Sand compaction piles	Sand is fed into ground through a casing pipe and compacted by either vibratio dynamic impact, or static excitation to form columns.	
	C4. Geotextile confined columns C5. Rigid inclusions (or composite foundation, also see Table 5)	Sand is fed into a closed bottom geotextile lined cylindrical hole to form a column. Use of piles, rigid or semi-rigid bodies or columns which are either premade formed in-situ to strengthen soft ground.	
	C6. Geosynthetic reinforced column or pile supported embankment	Use of piles, rigid or semi-rigid columns/inclusions and geosynthetic girds enhance the stability and reduce the settlement of embankments.	
	C7. Microbial methods	Use of microbial materials to modify soil to increase its strength or reduce i permeability.	
	C8 Other methods	Unconventional methods, such as formation of sand piles using blasting and the u of bamboo, timber and other natural products.	
D. Ground improvement with grouting type admixtures	D1. Particulate grouting	Grout granular soil or cavities or fissures in soil or rock by injecting cement or oth particulate grouts to either increase the strength or reduce the permeability of soil ground.	
	D2. Chemical grouting	Solutions of two or more chemicals react in soil pores to form a gel or a sol precipitate to either increase the strength or reduce the permeability of soil ground.	
	D3. Mixing methods (including premixing or deep mixing)	Treat the weak soil by mixing it with cement, lime, or other binders in-situ using mixing machine or before placement	
	D4. Jet grouting	High speed jets at depth erode the soil and inject grout to form columns or panels	
	D5. Compaction grouting	Very stiff, mortar-like grout is injected into discrete soil zones and remains in homogenous mass so as to densify loose soil or lift settled ground.	
	D6. Compensation grouting	Medium to high viscosity particulate suspensions is injected into the groun between a subsurface excavation and a structure in order to negate or redu- settlement of the structure due to ongoing excavation.	
E. Earth reinforcement	E1. Geosynthetics or mechanically stabilised earth (MSE)	Use of the tensile strength of various steel or geosynthetic materials to enhance the shear strength of soil and stability of roads, foundations, embankments, slopes, retaining walls.	
reinforcement			
reinforcement	E2. Ground anchors or soil nails	Use of the tensile strength of embedded nails or anchors to enhance the stability slopes or retaining walls.	

- 4. TC211 ACTIVITIES IN SEOUL 2017
- Organization of 4 Discussion Sessions
- General report of the papers by Noël Huybrechts, Nicolas Denies, Jeroen Dijkstra, Cholachat Rujikiatkamjorn, Jérôme Racinais & Almer van der Stoel
- Organization of a common TC211-TC218 Workshop on the topic of "MSE Walls and Reinforced Soil Slopes"

SESSION 1-9:00 to 10:30 (duration = 90 minutes)

Provisional title of the presentation or topic	NAME OF THE SPEAKER	COMPANY	COUNTRY	Duration (minutes)
Introduction to the TC211 activities	Noël Huybrechts – chairman TC211	Belgian Building Research Institute	Belgium	10 minutes
Introduction to the TC218 activities Presentation of the new TC218	John Sankey – chairman TC218	Terre Armée	USA	10 minutes
PRESENTATION 1 Overview of MSE Wall & Anchor Solutions	John Sankey	Terre Armée	USA	20 minutes
PRESENTATION 2 Mining Applications of MSE Walls	Gary Power	The Reinforced Earth Company	Australia	20 minutes
PRESENTATION 3 Use of Polymeric Geogrids in Structures with Non-Standard Reinforced Fills	Chaido Doulala-Rigby (Yuli)	Tensar International Ltd	UK	20 minutes
DISCUSSION/QUESTIONS 10 minutes				10 minutes

- 4. TC211 ACTIVITIES IN SEOUL 2017
- Organization of 4 Discussion Sessions
- General report of the papers by Noël Huybrechts, Nicolas Denies, Jeroen Dijkstra, Cholachat Rujikiatkamjorn, Jérôme Racinais & Almer van der Stoel
- Organization of a common TC211-TC218 Workshop on the topic of "MSE Walls and Reinforced Soil Slopes"

SESSION 2 - 11:00 to 12:30 (duration = 90 minutes)

SESSION 2 11:00 to 12:00 (duration	n >0 mmuces,			
PRESENTATION 4	Pietro Rimoldi	Maccaferri	Italy	20 minutes
Hybrid reinforced soil structures with				
primary and secondary reinforcement				
for high walls and slopes				
PRESENTATION 5	Yoshihisa Miyata	National Defense	Japan	20 minutes
Seismic Considerations for Reinforced		Academy		
Soil Slopes and MSE Walls				
PRESENTATION 6	Oliver Detert	Huesker	Germany	20 minutes
Special Solutions with Geosynthetic				
MSE Walls				
PRESENTATION 7	Kent P. von Maubeuge	NAUE GmbH &	Germany	20 minutes
Earth Pressure Distribution in the		Co. KG		
Facing Area of Geogrid Reinforced				
Earth Structures – Field				
Measurements and Design Practice				
DISCUSSION/QUESTIONS				10 minutes

- 1. TC211 Workshop in Edinburgh (September 15th 2015) Progress in QC/QA for GI works
- 2. TC211 Workshop in Kuala Lumpur (May 31th to June 3 2016) GI works
- 3. TC211 Workshop in Guimarães (September 4th to 7th 2016) GI and soil stabilization
- 4. TC211 ACTIVITIES IN SEOUL 2017
- 5. Strong collaboration with:
 - The Deep Foundation Institute (DFI)

For this conference, TC211 members were actively participating with presentations of Abir Al-Tabbaa, Antonio Alberto Correia, Nicolas Denies, Stefan Larsson, Mitsuo Nozu, Michał Topolnicki...

- 1. TC211 Workshop in Edinburgh (September 15th 2015) Progress in QC/QA for GI works
- 2. TC211 Workshop in Kuala Lumpur (May 31th to June 3 2016) GI works
- 3. TC211 Workshop in Guimarães (September 4th to 7th 2016) GI and soil stabilization
- 4. TC211 ACTIVITIES IN SEOUL 2017
- 5. Strong collaboration with:
 - The Deep Foundation Institute (DFI)
 - The ETC 3 (European Technical Committee 3 Piles)

Belgian Member Society of ISSMGE

co-organized by our Chairman, Noël Huybrechts and focusing on the design of pile foundations in Europe

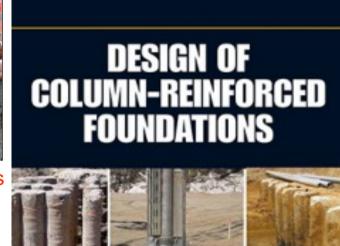
Design of Piles in Europe

How did Eurocode 7 change daily practice?

International Symposium 28 and 29 April 2016, Leuven, Belgium

Special keynote lecture written by our TC 211 members: S. Varaksin, B. Hamidi, N. Huybrechts and N. Denies: "Ground improvement vs. pile foundations?" highlighting the fundamental differences between the design of pile foundations and the design of rigid inclusions including (or not) a load transfer platform

- 1. TC211 Workshop in Edinburgh (September 15th 2015) Progress in QC/QA for GI works
- 2. TC211 Workshop in Kuala Lumpur (May 31th to June 3 2016) GI works
- 3. TC211 Workshop in Guimarães (September 4th to 7th 2016) GI and soil stabilization
- 4. TC211 ACTIVITIES IN SEOUL 2017
- 5. Strong collaboration with:
 - The Deep Foundation Institute (DFI)
 - The ETC 3 (European Technical Committee 3 Piles)
 - The TC102 In-situ Testing (Workshop in Edinburgh)
 - The new TC 218 Reinforced fills (cf. common Workshop TC211-TC218 organized in Seoul 2017)
- 6. Participation to dedicated publications



Dutch handbook Soil mix walls

- Design and Execution
- soon available in English !!!
- Last review in progress
- Taylor and Francis publisher

MOUNIR BOUASSIDA

FINTE - CLIVIC

"Innovations in design, execution and QA/QC of Ground Improvement works"

- 1. Launch of a **new TC211 website** more information will be sent to the TC members in the near future
- 2. Abandoning the Newsletters for a more dynamic way of communication (short and more regular)
- 3. Participate by **dedicated workshops** in the international conferences inviting TC members to contribute to the knowledge and develop the addressed themes
- 4. Promote the activities and the **links with other organizations** or TC's (in particular the Deep Foundations Institute DFI, the EFFC, the TC 102 In situ testing and the new TC218 Reinforced fills)
- 5. Introduce a new principal theme for the period: "Innovations in design, execution and QA/QC of Ground Improvement works"
- 6. Organize **two main TC211 WORKSHOPS** at the ECSMGE Reykjavik 2019 and ICSMGE Sydney 2021 based on the new principal theme "Innovations"
- 7. Organize the next Louis Ménard Lecture in Sydney 2021
- 8. The board currently studies the opportunity to organize a **new International Symposium IS-GI Brussels**

COMING SOON - The TC211 will be in Rome:

June 5-8, 2018 | Rome, Italy

DFI-EFFC International Conference on Deep Foundations and Ground Improvement: *Urbanization and Infrastructure* Development-Future Challenges

June 05, 2018 - June 08, 2018 Sapienza University Rome, Italy

TC211 participation to an ISSMGE Survey on Innovation – that's now

(Message sent on behalf of Prof. Pierre Delage, Chairman of the ISSMGE Technical Oversight Committee.)

https://www.surveymonkey.com/r/RSX6HS2

It should take no more than 8 minutes to fill in the survey.

Also, a lottery will be held and one participant will receive a set of geotechnical books; to be eligible for the prizes, participants are asked to include their email in their response.

DEADLINE = April 30th 2018

Thank you for participating, the contribution of TC members to this important initiative is mostly appreciated.

Charles Ng, President of ISSMGE

Dimitrios Zekkos, Chair of the Innovation and Development Committee (IDC)

Pierre Delage, Chair of the Technical Oversight Committee (TOC)

Programme de la journée

HORAIRE	DUREE	TITRE	INTERVENANT(S)
09h00 - 09h30	00:30	Accueil des participants, café d'accueil	
09h30 - 09h40	00:10	Accueil	P. Gotteland (FNTP)
09h40 - 10h00	00:20	Introduction – Exposé TC211	J. Racinais (TC211-CFMS)
10h00- 10h30	00:30	Recherche et Innovation FNTP	S. Borel (Comité Sols FNTP)
10h30 – 11h00	00:30	Combinaisons de procédés de renforcement de sol sous des éoliennes	S Lambert (Keller)
11h00 – 11h30	00:30	Le projet national ASIRI+	B. Simon (Terrasol)
11h30 – 12h00	00:30	Instrumentation, un outil pour les chantiers d'amélioration des sols	L. Briançon (INSA Lyon)
12h00 – 12h30	00:30	Présentation du livre Amélioration et Renforcement des Sols - AMSOL	L. Briançon, P. Liausu, C. Plumelle, B. Simon
12h30 – 13h45	01:15	Buffet déjeunatoire offert par les entreprises	

Programme de la journée

HORAIRE	DUREE	TITRE	INTERVENANT(S)
13h45 – 14h00	00:15	Matériaux allégés	JP. Sanfratello (Colas)
14h00 – 14h15	00:15	Méthodes biologiques	JF. Mosser (Solétanche Bachy)
14h15 – 14h45	00:30	Consolidation atmosphérique - Aéroport de Mexico	C. Plomteux (Menard)
14h45 – 15h10	00:25	Traitement de sol par combinaison de panneaux CSM et colonnes de Jet-Grouting à Hong Kong	F. Mathieu (Soletanche Bachy)
15h10 – 15h30	00:20	Traitement de sol par Sol Mixing : une recherche pour une démarche de caractérisation structurelle	Jacques HESSOUS, Olivier HELSON (UCP)
15h30 -16h00	00:30	Pause	
16h00 –16h30	00:30	Injection de résine	N. Faure (Uretek)
16h30 – 17h00	00:30	Quels référentiels pour les techniques d'amélioration et renforcement des sols ?	L. Carpinteiro
Fin de la joumée			