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Reinforced soils/rocks
regarded as
«geocomposite»
materials

Reinforcing mclusmns
(steel, polymeric
material, concrete,...)




Stability analysis of reinforced soil structures by means of the Yield Design approach
(Salencon, 1990, 2013, 2023)<

Static equilibrium

Checking the compatibility between: _...under prescribed loading
Strength (failure)
conditions

Three possible mechanical models of reinforced soils:

1. The mixed modelling approach : soil as a 3D continuum
vs. inclusions as 1D structural members.

2. The homogenization method: reinforced soil as a homogeneous anisotropic medium.

3. The multiphase model as an extension of the homogenization method.




I 1. Mixed modelling of reinforced soils in the context of Yield Design ‘

Classical stability analyses Mixed modelling
by «failure surfaces» of reinforced soils

j{t%?:i:i:ﬁ: Stress field
in the soil mass

normal/shear stresse

Reinforcement:
bending moment

« 1D (beam)
« 2D (plate)




Implementation of the Yield Design reasoning: an illustrative example |

Stgbility analy§is of [Stability of the excavation << ['=yH /c < F*J
a reinforced vertical cut @

. o in the soil;
(N,V,M) along the reinforcements

....In equilibrium with ¥

i

46T
NO V;) 0

~Interaction formula (2)

M (N,V,M)

1
2 }verifying strength conditions {22;

-1<0

Flexible inclusions: |[N|<N,; V=M =0




Lower bound static approach proves A simple analytical
difficult, if not impossible, to implement upper bound kinematic approach

Virtual work of external forces
(per unit transverse length)

Virtual translational failure mechanism |

weight OAB
We(Q) =1/2yH” tana

U

cos(ax +y)

Maximum resisting work:
two contributions




Kinematic theorem
of Yield Design

Etability o yH/c<TH= VU, W,U)<W, U)

= Y(e,p)el0,7/2[x]|px—¢[, T < F”B@—» optimization

parameters
Optimal upper boundfor ¥ =¢ and a=z/4—¢ /2
- ) 2| K, =tan’ (7/4+¢ / 2)

: <T'Y8 4 / 14 N, Ve +K, passive earth

o 2cH |\ N, pressure coefficient

L /4—¢/2 i |

To what extent should the |
« Unreinforced excavation N,=V,=0—>T" g[l“”B =4, /Kp] shear (V,) and bending

(M,) strengths of the

» Reinforcement with flexible inclusions ,
ﬂ reinforcements be taken

N
V=0o>Tr<"®=4/K |1+ /K 2
" E‘ p[ " 2cH

into account?
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Improved upper-bounds derived from
rotational mechanisms with shear zones. |

4.0

...based on experimental observations

Ring-shaped 583
&
shear layer

|

3.0 R

Conclusions:

Contribution of the shear/bending strengths always positive...

...but not as important as expected from a «slip-circle» analysis.

L —

R

Employing mechanisms with velocity discontinuity surfaces
adopting a reduced shear strentgh: uV, instead of ¥

— nail breakage ~




2. Yield strength of reinforced soils as anisotropic media: the homogenization approach
Applicable to densely and regularly reinforced soils

m ” periodicity
d __dilfo " _./
Snda'fion e \l/ s T 4 e=s/B<<l Sy
fo in TTTan 1n ey mmm ummrmmmrmnm Nl wmmu HII\WHHHIHIH mnn
£ Equivalent
w - :% inc|lusi0n homogeneous
Bl ; medium
. soil L |
/ R
Method based on the
: : Ultimate bearing capacity of... prior determination
Yield Design 9 y ¢ :
homogenization result initial  scale ~ homogenized stg ef‘g.‘r?‘cr;?n?iﬁ on
(Suquet, 1983: de Buhan, 1986)  Structure.  factor structure -

0'(s) T30 Ohom
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Formulation of a MACROSCOPIC STRENGTH CONDITION

buckling

for thm hlghly resistant linear inclusions

Tensile
resistance

Derivation of a closed-form expression
(de Buhan & Salencon, 1987; de Buhan et al., 1989,..

v

fhom (Z

) < () «macroscopic» stress
|

;5

additive -~
decomposition = 2=

N

® j uniaxial stress

r (28)30
Mohr-Coulomb
strength criterion

0<oc"<0,=N,/S

S,
__ _GY

N
Interpretation of

S S

v
‘ volume fraction
Oy

<<1

Tensile strength of the reinforcements per unit transverse area
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Three geometrical interpretations ‘ 2...in the deviatoric plane |

1 Strength domains in the space of stresses
(plane strain conditions)

))
» T X =3
Gs Ghom : . D 7

reinforcing effect
/ f 2%, 3...in the Mohr’s plane |
relnforced 4
soll G strength
| g anisotroPY.
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I Implementation of the static and kinematic approaches ‘

. h U .
Lower pound statiC approac Pper boung klnematic approach

(r S ( -
0<O, =o' o'} st 0<Q0;, =vU
strength conditions w,U)<w,."(U)
ff(@)<0and 0<o" <0, AW'th A
+ w,U)=0qU)
X=0 +0't®t and
in equilibrium with O W™ (U) =W (U)+ W (U)

maximization = . — minimization

. > hom < hom < hom 1€ :

13



Stability analysis of a reinforced

‘ 25

retaining structure (Abdi et al., 1994) o, /2c=1
Evaluation of the 20
critical stability factor
yH/c<T, (§) B /u;5 relative gap
L om between
10 2% and 5%
=
S
; $(°)
0 9} 10 15 20 25 30 35
= = = = aa Kinematic upper bound with logspiral mechanisms
f.e.m-based kinematic upper bound

f.e.m-based static lower bound
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Advantages of the homogenization approach....

* Lower bound static method of YD always feasible, unlike the mixed
modelling approach.

« Considerable simplification of Yield Design analyzes and sharply
reduced computational times by treating the reinforced soil as a
homogeneous medium and not as a strongly heterogeneous material

...but two limitations

« Fails to capture the shear/flexural strength properties of the
reinforcements, implicitly considered as flexible.

* Relies upon the assumption of perfect bonding between the inclusions
and the surrounding soll.

....towards a multiphase description of reinforced soils
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3. The multiphase model as an improved homogenization method
(de Buhan and Sudret, 1999; de Buhan and Hassen, 2010, ...)

Description of the reinforced soil as:

« the superposition of two geometri-
cally coincident continua («phases»)

e ...In mutual interaction. |

[ : interaction force volume density

i

(o”,7",m"). normal, shear force reinforcement
and bending moment per unit phase m
transverse area

N
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Yield Design analysis of reinforced soil structures as multiphase systems

Q S Qr:ult.
soil — ﬁ rreinforcement

soil phase: £ (c’)<0

) . r r r .ot i —
3{@ L {O' T ,m’) } D'St”b“t'onlS Mohr-Coulomb
i ter;ction of interné
in ses.:-
 stresseS

Interaction criterion

...and satisfying eny<o
the different I ‘f Q)=

...otatically Admissible with O strength [
(equilibrium equations + boundary conditions —>{ reinforcement phase:
conditions expressed on each
phase separately) (0,,7,,M,) : normal, shear (0’” )2 (Tr jz '
and bending strengths +| — | + ~-1<0
per unit transverse area \ 9o 4 my
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The homogenization method as a particular case of the multiphase model

multiphase S : (TO B nj_o =0) | homogenization
model : .
ﬂ . perfect bonding

approach

._(no conditionon 7) /

scale factor : ¢ = % —0

reinforcement
volume fraction

n =ct

) il >
Limited number of piles Large number of thin
of large diameter inclusions
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Application to the stability analysis of a piled embankment under earthquake loading

44m Seismic loading
embankment P characterized by the
c=0,¢=35° ‘ non-dimensional coefficient k

s granular layer S

Stability

7 =18 kN/m’ \ ﬁ
1T 7T soft clay layer <kt
inclusions (piles) ¢ =20 kPa,¢ =0 —
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om0 Derivation of upper and lower
bound estimates for k*, using:
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granular layer

embankment

 a finite element formulation,

pile-reinforced zone « convex optimization procedures.
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Results for perfectly bonded inclusions (Hassen et al., 2021) ‘

Optlma|
JLBIUB mechanlsm
(o, =1IMPa,m,) \d\
0.20 initial upper bound (coarse mesh)
B Pl ‘ ........ ‘ ........ 1 ........ 1 ........ Unreinforced KB = 0 04
| -~ lmproved upper bound (reflned mesh)
0.16 a >
A N
0.14 lower bound
01 3 Wil | Increasing B
| - | bending
> i — strength —>
0.10 ' ! -
0 005 0.10 0.15 020 025 030 035 040 : _ . .
Bending resistant inclusions
my, (MN/m)

kBB ~0.16
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Concluding remarks |

The implementation of the Yield Design approach on reinforced soil structures reveals two situations:

» Only a very small number of inclusions are placed in the soil following no reqular arrangement:
« The mixed modelling approach appears to be the most suitable way of dealing with the stability
analysis of such structures, predominantly in the context of the upper bound kinematic approach.

« Mechanisms with failure surfaces can still be used taking the resisting contribution of the reinforcements into
account in an appropriate manner.

» The most frequently encountered situation when a large number of requilarly distributed inclusions are
involved:

« The implementation of a multiphase model, perceived as an improved homogenization method,
allows to obtain accurate bounds on the ultimate bearing capacity of this type of reinforced soil structures.

« The model may easily incorporate the shear/bending strength characteristics of the reinforcement as well as
a specific failure condition at the soil-inclusion interface.

« |t is also fully applicable to other kinds of constitutive behavior of the reinforced soil components
(elastoplasticity, elastodynamics: example of settlement/dynamic stiffness of a piled foundation)
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