

ACADÉMIE INSTITUT DE FRANCE

Charles-Augustin COULOMB - A geotechnical tribute

Computational Limit Analysis and Extensions

K. Krabbenhoft Optum Computational Engineering

Geos SoilCloud SOLETANCHE BACHY

Paris, september 25 & 26, 2023

Outline

Introduction The conventional FE approach The Optum approach Examples Future developments

Introduction

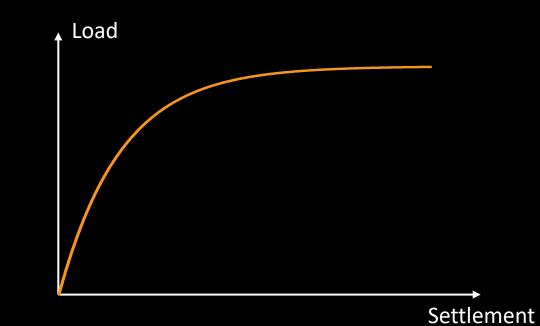
Question:

What is the maximum magnitude of loading that the foundation can sustain?

Introduction

Question:

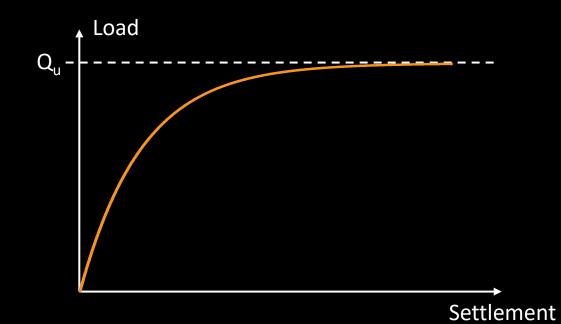
What is the maximum magnitude of loading that the foundation can sustain?



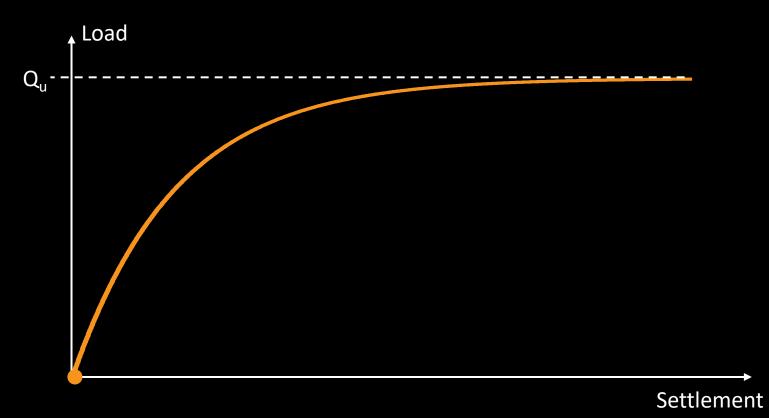
Introduction

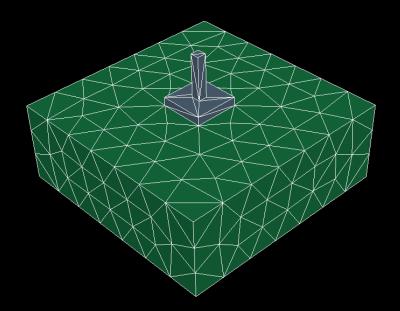
Question:

What is the maximum magnitude of loading that the foundation can sustain?

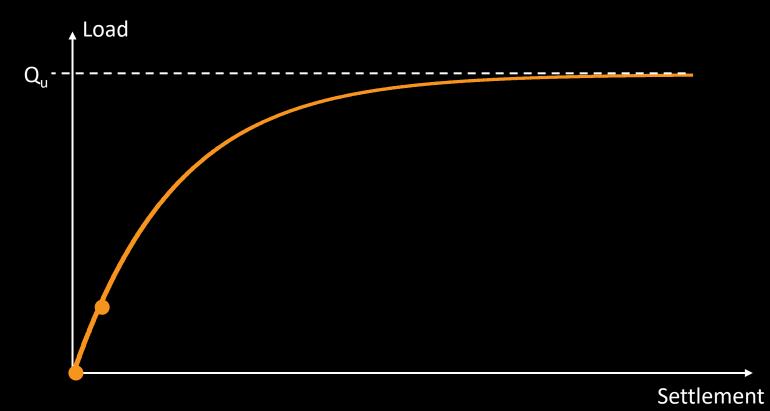


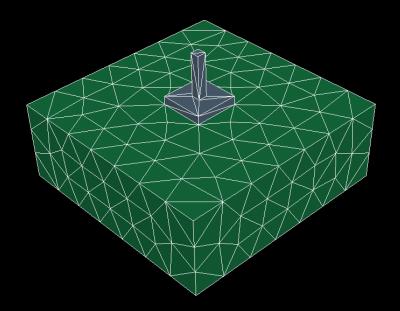
Increase load to failure:



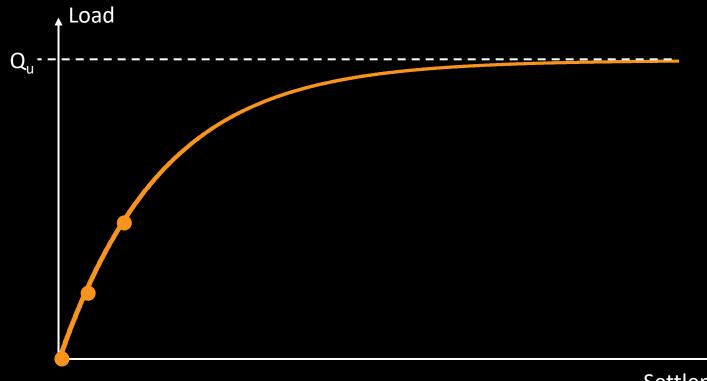


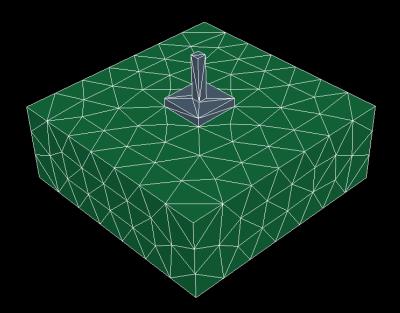
Increase load to failure:



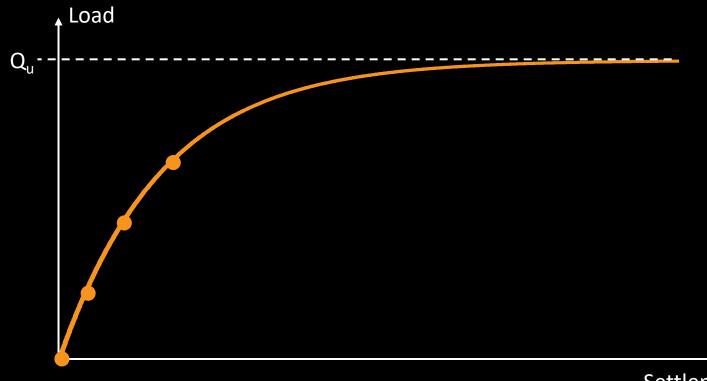


Increase load to failure:

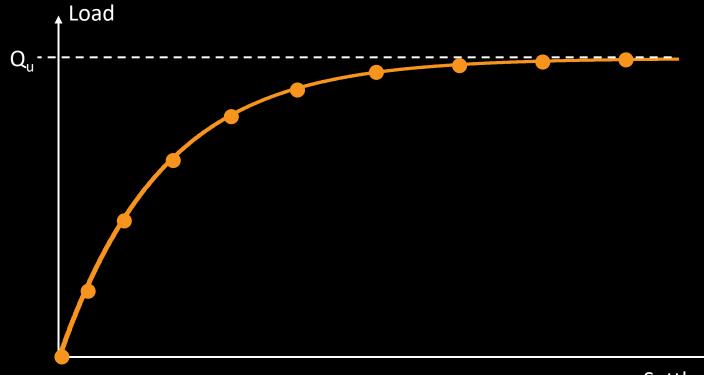




Increase load to failure:



Increase load to failure:

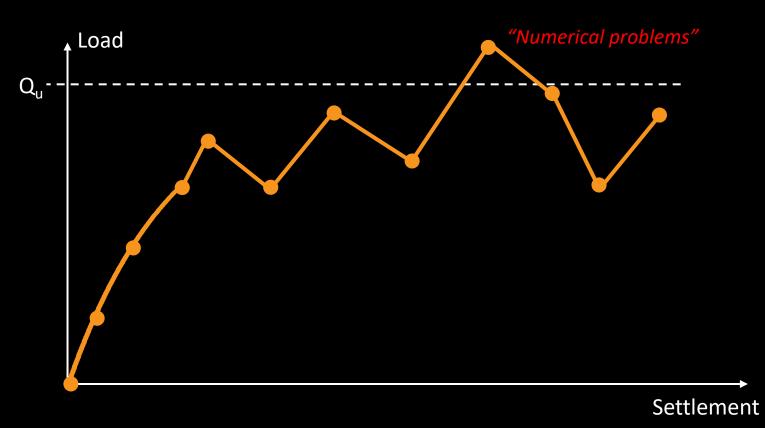


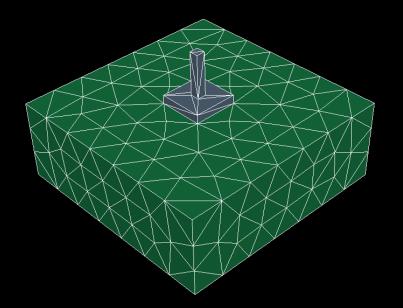
Increase load to failure:

Increase load to failure:

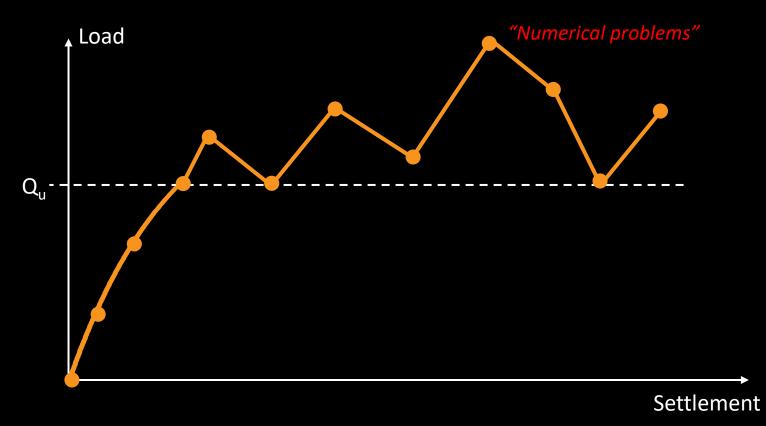


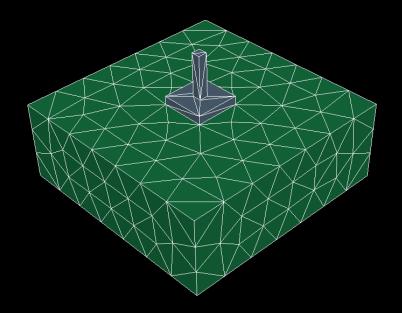
Increase load to failure:



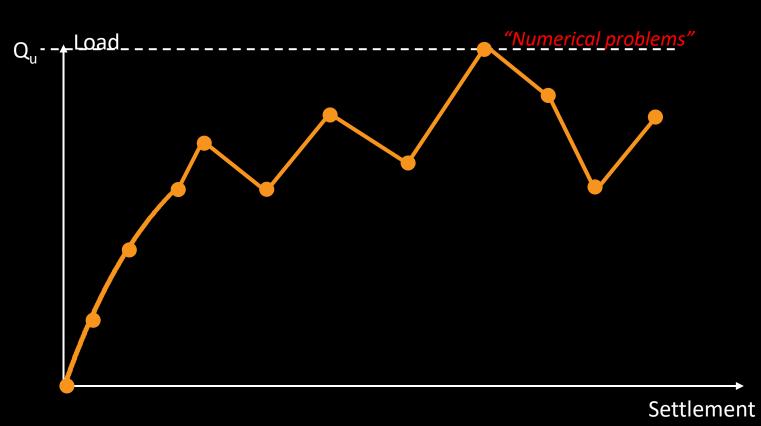


Increase load to failure:

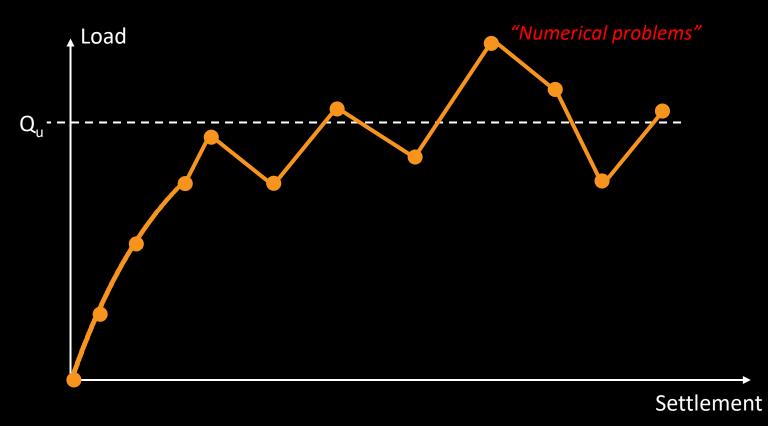


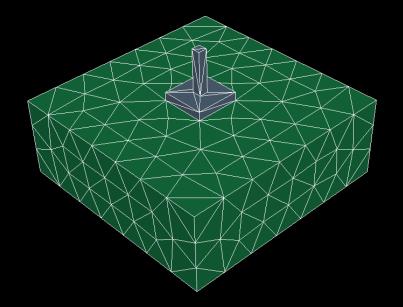


Increase load to failure:

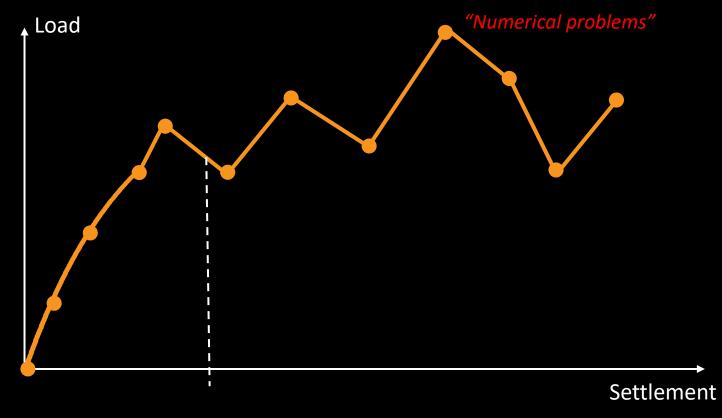


Increase load to failure:

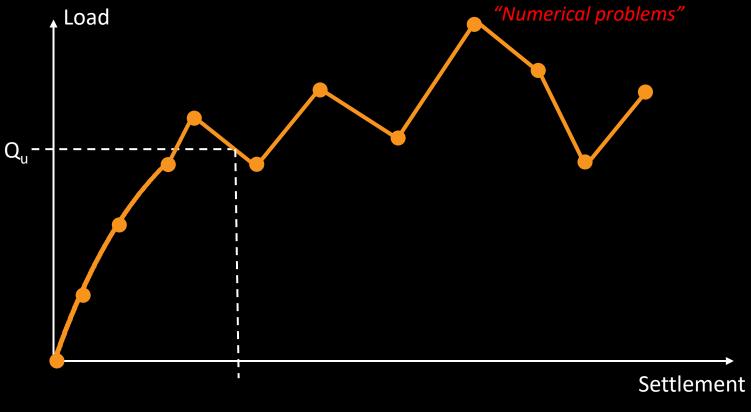




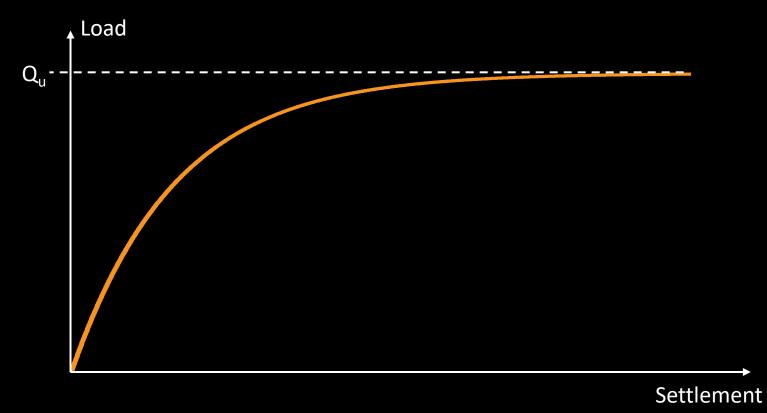
Increase load to failure:

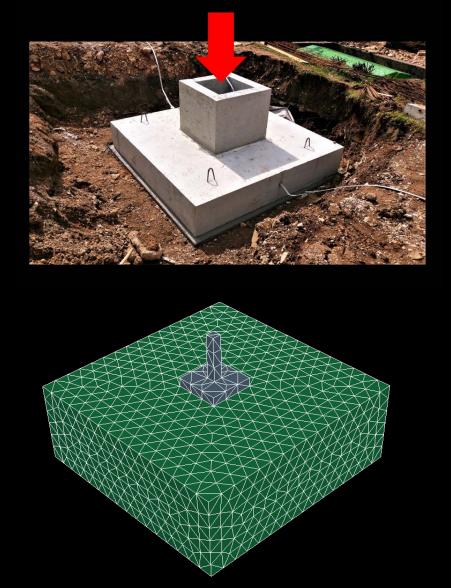


Increase load to failure:

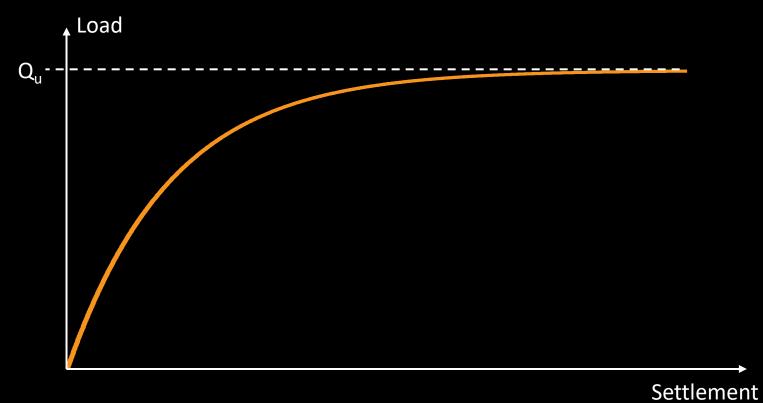


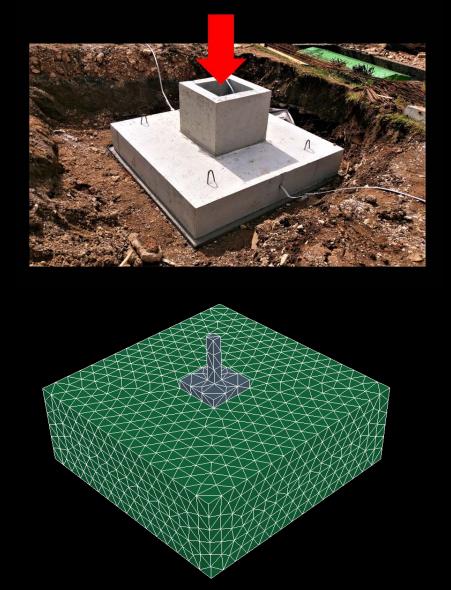
Increase load to failure:



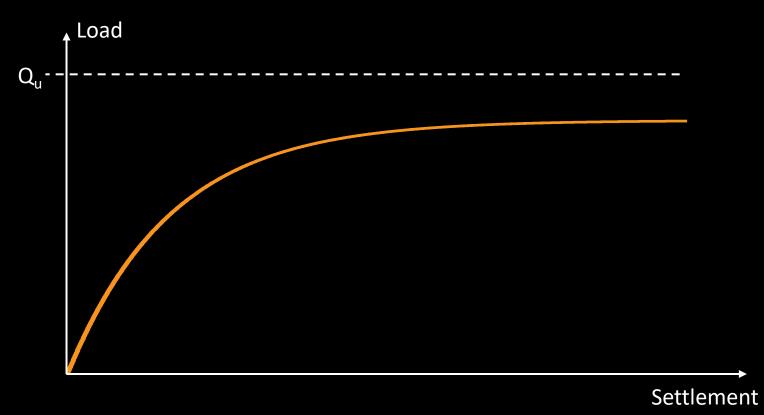


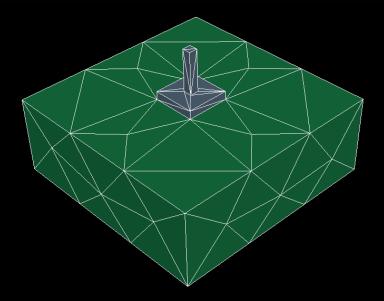
Increase load to failure:





Increase load to failure:





Increase load to failure: ▲ Load Q_u-Settlement

▲ Load Q_u--Settlement

Increase load to failure:

Is there a better way?

ESSAI

Sur une application des règles de Maximis & Minimis à quelques Problèmes de Statique, relatifs à l'Architecture.

Par M. COULOMB, Ingénieur du Roi.

INTRODUCTION.

C E Mémoire est destiné à déterminer, autant que le mélange du Calcul & de la Physique peuvent le permettre, l'influence du frottement & de la cohésion, dans quelques problèmes de Statique. Voici une légère analyse des différens objets qu'il contient.

Coulomb (1736-1806)

ESSAI

Sur une application des règles de Maximis & Minimis à quelques Problèmes de Statique, relatifs à l'Architecture.

Par M. COULOMB, Ingénieur du Roi.

INTRODUCTION.

C E Mémoire est destiné à déterminer, autant que le mélange du Calcul & de la Physique peuvent le permettre, l'influence du frottement & de la cohésion, dans quelques problèmes de Statique. Voici une légère analyse des différens objets qu'il contient.

Coulomb (1736-1806)

Coulomb (1736-1806)

ESSAI

Sur une application des règles de Maximis & Minimis à quelques Problèmes de Statique, relatifs à l'Architecture.

Par M. COULOMB, Ingénieur du Roi.

INTRODUCTION.

CE Mémoire est destiné à déterminer, autant que le mélange du Calcul & de la Physique peuvent le permettre, l'influence du frottement & de la cohésion, dans quelques problèmes de Statique. Voici une légère analyse des différens objets qu'il contient.

Euler (1707-1783)

Since the fabric of the universe is most perfect and the work of a most wise Creator, nothing whatsoever takes place in the universe in which some relation of maximum or minimum does not appear.

ESSAI

Sur une application des règles de Maximis & Minimis à quelques Problèmes de Statique, relatifs à l'Architecture.

Par M. COULOMB, Ingénieur du Roi.

INTRODUCTION.

C E Mémoire est destiné à déterminer, autant que le mélange du Calcul & de la Physique peuvent le permettre, l'influence du frottement & de la cohésion, dans quelques problèmes de Statique. Voici une légère analyse des différens objets qu'il contient.

Coulomb (1736-1806)

Variational principles – examples:

- + Fermat's principle (implying Snell's law of refraction)
- + Classical mechanics (Maupertuis, Lagrange, Hamiltion)
- + Principle of least action (classical and quantum mechanics)
- + Hilbert's action principle (yielding Einstein's field equations)
- Mechanics of solids elastostatics (e.g. Hellinger-Reissner), dynamics, plasticity and much more

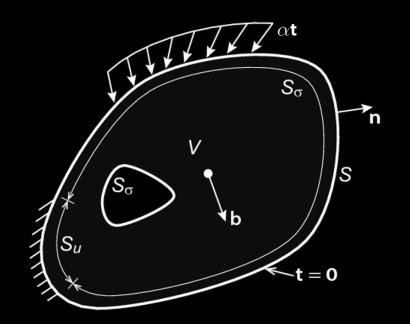
Euler (1707-1783)

Since the fabric of the universe is most perfect and the work of a most wise Creator, nothing whatsoever takes place in the universe in which some relation of maximum or minimum does not appear.

Rigid plasticity (limit analysis)

Equilibrium: $\nabla \cdot \sigma + b = 0$ Static BC: $n \cdot \sigma = \alpha t$ on S_{σ} Strain-disp: $\dot{\varepsilon}^p = \nabla \dot{u}$ Yield condition: $F(\sigma) \leq 0$ Flow rule: $\dot{\varepsilon}^p = \dot{\lambda} \frac{\partial F}{\partial \sigma}$

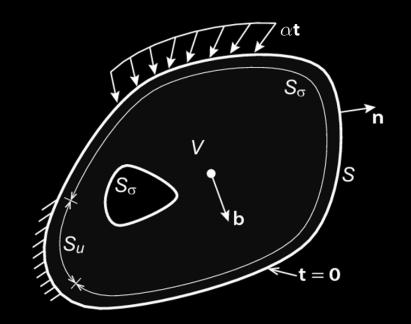
Complementarity: $\dot{\lambda} \geq 0, \ \dot{\lambda}F(\boldsymbol{\sigma}) = 0$



Rigid plasticity (limit analysis)

Equilibrium: $\nabla \cdot \sigma + b = 0$ Static BC: $n \cdot \sigma = \alpha t$ on S_{σ} Strain-disp: $\dot{\varepsilon}^p = \nabla \dot{u}$ Yield condition: $F(\sigma) \leq 0$ Flow rule: $\dot{\varepsilon}^p = \dot{\lambda} \frac{\partial F}{\partial \sigma}$

Complementarity: $\dot{\lambda} \ge 0, \ \dot{\lambda}F(\boldsymbol{\sigma}) = 0$



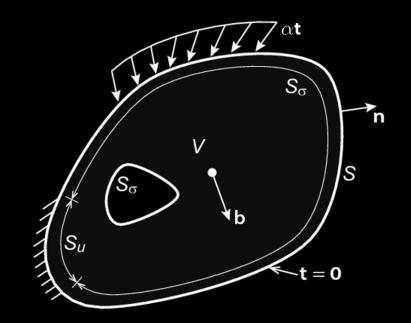
Variational principle (lower bound):

$$\begin{array}{ll} {\rm maximize} & \alpha \\ {\rm subject \ to} & {\boldsymbol{\nabla}}\cdot{\boldsymbol{\sigma}}+{\boldsymbol{b}}={\boldsymbol{0}} \\ & {\boldsymbol{n}}\cdot{\boldsymbol{\sigma}}=\alpha{\boldsymbol{t}} \ \ {\rm on} \ S_{\sigma} \\ & F({\boldsymbol{\sigma}})\leq 0 \end{array}$$

Rigid plasticity (limit analysis)

Equilibrium: $\nabla \cdot \sigma + b = 0$ Static BC: $n \cdot \sigma = \alpha t$ on S_{σ} Strain-disp: $\dot{\varepsilon}^p = \nabla \dot{u}$ Yield condition: $F(\sigma) \leq 0$ Flow rule: $\dot{\varepsilon}^p = \dot{\lambda} \frac{\partial F}{\partial \sigma}$

Complementarity: $\dot{\lambda} \ge 0, \quad \dot{\lambda}F(\boldsymbol{\sigma}) = 0$



Variational principle (lower bound):

$$\begin{array}{ll} {\rm maximize} & \alpha \\ {\rm subject \ to} & {\boldsymbol{\nabla}}\cdot{\boldsymbol{\sigma}}+{\boldsymbol{b}}={\boldsymbol{0}} \\ & {\boldsymbol{n}}\cdot{\boldsymbol{\sigma}}=\alpha{\boldsymbol{t}} \ \ {\rm on} \ S_{\sigma} \\ & F({\boldsymbol{\sigma}})\leq 0 \end{array}$$

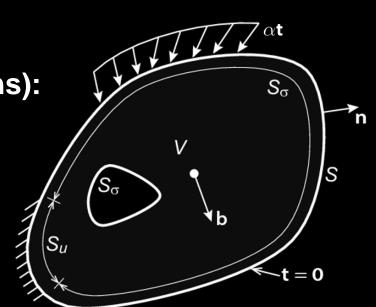
The variational principle (optimization problem) is in every way equivalent to the governing equations

Variational principle (equivalent to governing equations):

maximize α

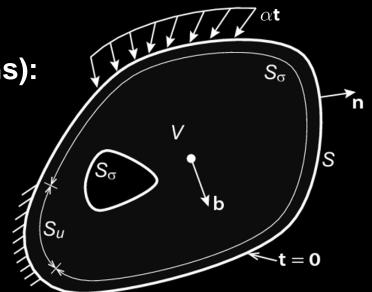
subject to

$$oldsymbol{
abla} oldsymbol{
abla} \cdot oldsymbol{\sigma} + oldsymbol{b} = oldsymbol{0}$$
 $oldsymbol{n} \cdot oldsymbol{\sigma} = lpha oldsymbol{t}$ on S_{σ} $F(oldsymbol{\sigma}) < oldsymbol{0}$



Variational principle (equivalent to governing equations):

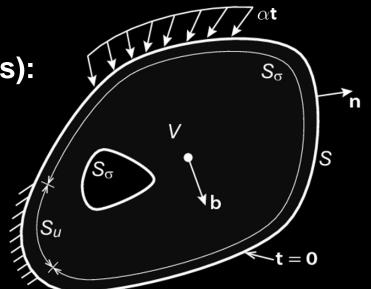
 $\begin{array}{ll} \mbox{maximize} & \alpha \\ \mbox{subject to} & \boldsymbol{\nabla}\cdot\boldsymbol{\sigma} + \boldsymbol{b} = \boldsymbol{0} \\ & \boldsymbol{n}\cdot\boldsymbol{\sigma} = \alpha \boldsymbol{t} \ \ \mbox{on} \ S_{\sigma} \\ & F(\boldsymbol{\sigma}) \leq 0 \end{array}$



Simple analogy: Hooke's law

Variational principle (equivalent to governing equations):

 $\begin{array}{ll} {\rm maximize} & \alpha \\ {\rm subject \ to} & {\boldsymbol \nabla}\cdot{\boldsymbol \sigma}+{\boldsymbol b}={\boldsymbol 0} \\ & {\boldsymbol n}\cdot{\boldsymbol \sigma}=\alpha{\boldsymbol t} \ \ {\rm on} \ S_{\sigma} \\ & F({\boldsymbol \sigma})\leq 0 \end{array}$



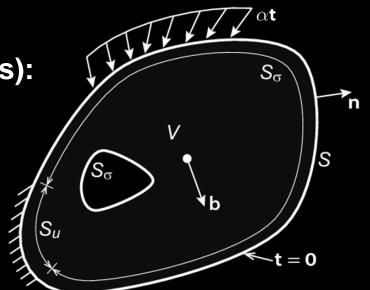
Simple analogy: Hooke's law

Either:

F = kx

Variational principle (equivalent to governing equations):

 $\begin{array}{ll} \mbox{maximize} & \alpha \\ \mbox{subject to} & \boldsymbol{\nabla}\cdot\boldsymbol{\sigma}+\boldsymbol{b}=\boldsymbol{0} \\ & \boldsymbol{n}\cdot\boldsymbol{\sigma}=\alpha\boldsymbol{t} \ \ \mbox{on} \ S_{\sigma} \\ & F(\boldsymbol{\sigma})\leq 0 \end{array}$



Simple analogy: Hooke's law

Either:

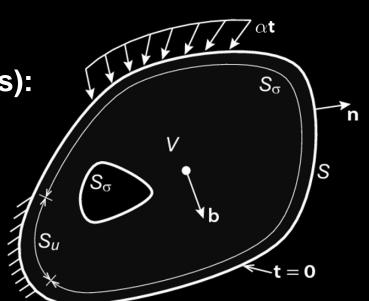
F = kx

or:

minimize $\frac{1}{2}kx^2 - Fx$

Variational principle (equivalent to governing equations):

 $\begin{array}{ll} \text{maximize} & \alpha \\ \text{subject to} & \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} + \boldsymbol{b} = \boldsymbol{0} \\ & \boldsymbol{n} \cdot \boldsymbol{\sigma} = \alpha \boldsymbol{t} \ \ \text{on} \ S_{\sigma} \\ & F(\boldsymbol{\sigma}) \leq 0 \end{array}$



Simple analogy: Hooke's law

Either:

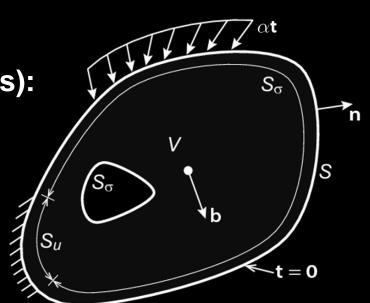
F = kx

or:

minimize
$$\frac{1}{2}kx^2 - Fx \rightarrow \frac{d}{dx}\left(\frac{1}{2}kx^2 - Fx\right) = 0$$

Variational principle (equivalent to governing equations):

 $\begin{array}{ll} \text{maximize} & \alpha \\ \text{subject to} & \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} + \boldsymbol{b} = \boldsymbol{0} \\ & \boldsymbol{n} \cdot \boldsymbol{\sigma} = \alpha \boldsymbol{t} \ \ \text{on} \ S_{\sigma} \\ & F(\boldsymbol{\sigma}) \leq 0 \end{array}$



Simple analogy: Hooke's law

Either:

F = kx

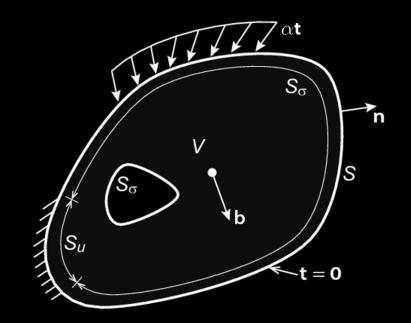
or:

minimize
$$\frac{1}{2}kx^2 - Fx \rightarrow \frac{d}{dx}\left(\frac{1}{2}kx^2 - Fx\right) = 0 \Rightarrow kx - F = 0$$

Rigid plasticity (limit analysis)

Equilibrium: $\nabla \cdot \sigma + b = 0$ Static BC: $n \cdot \sigma = \alpha t$ on S_{σ} Strain-disp: $\dot{\varepsilon}^p = \nabla \dot{u}$ Yield condition: $F(\sigma) \leq 0$ Flow rule: $\dot{\varepsilon}^p = \dot{\lambda} \frac{\partial F}{\partial \sigma}$

Complementarity: $\dot{\lambda} \ge 0, \quad \dot{\lambda}F(\boldsymbol{\sigma}) = 0$



Variational principle (lower bound):

$$\begin{array}{ll} \mbox{maximize} & \alpha \\ \mbox{subject to} & \boldsymbol{\nabla}\cdot\boldsymbol{\sigma}+\boldsymbol{b}=\boldsymbol{0} \\ & \boldsymbol{n}\cdot\boldsymbol{\sigma}=\alpha\boldsymbol{t} \ \ \mbox{on} \ S_{\sigma} \\ & F(\boldsymbol{\sigma})\leq 0 \end{array}$$

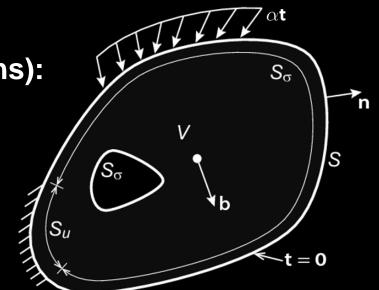
The variational principle (optimization problem) is in every way equivalent to the governing equations

Variational principle (equivalent to governing equations):

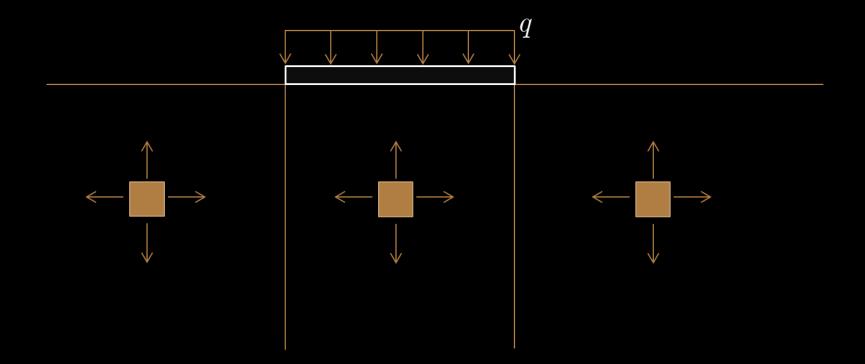
maximize α

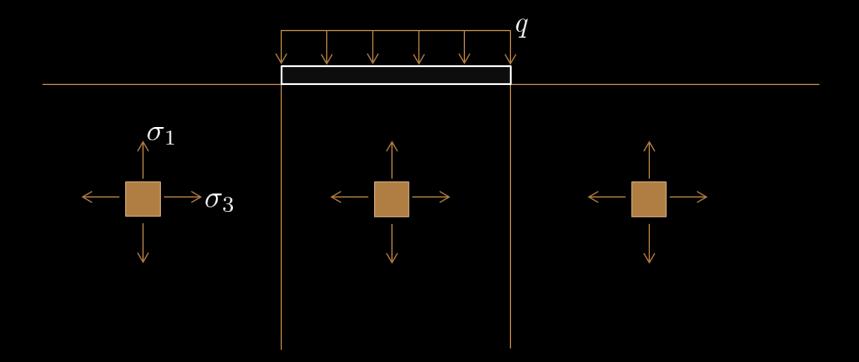
subject to

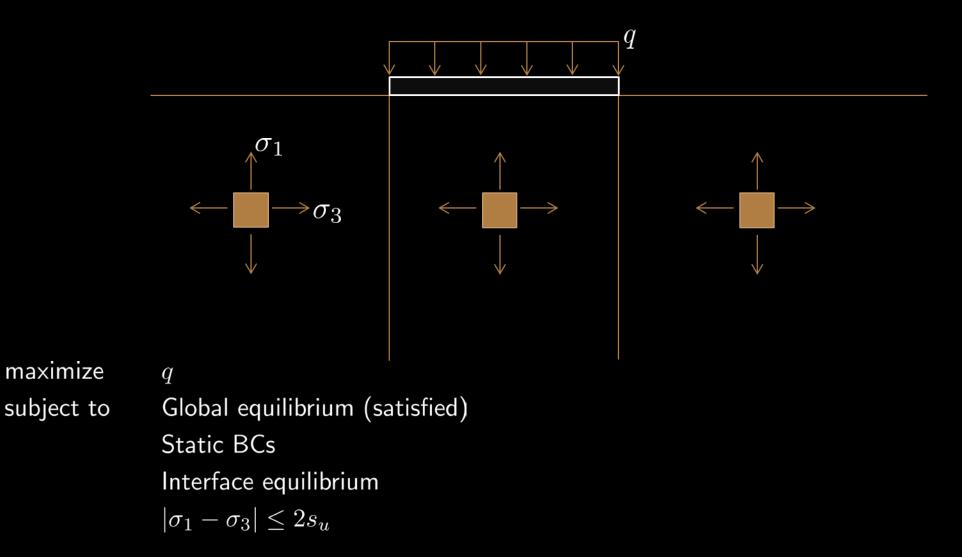
$$oldsymbol{
alpha} oldsymbol{
alpha} oldsymbol{
alpha} oldsymbol{
bla} oldsymbol{
alpha} oldsymbol{
bla} oldsymbol{
b$$

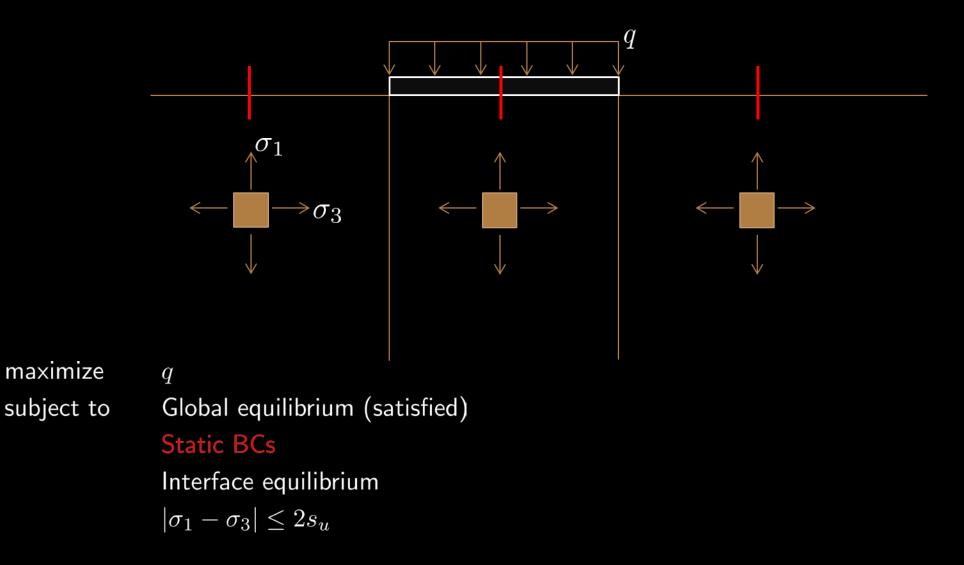


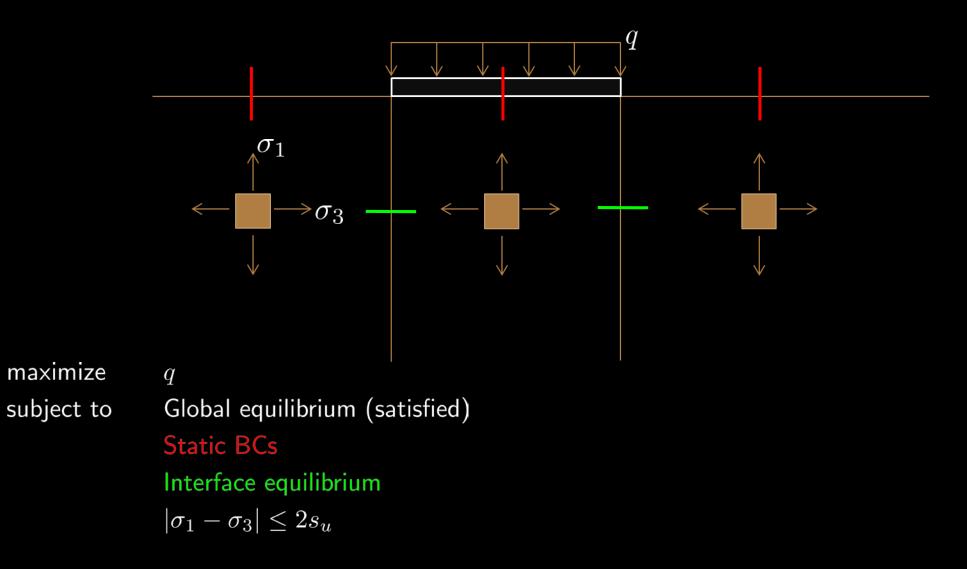
However: partial solutions (solutions that satisfy the constraints but are not optimal) will be lower bounds (less than the optimal α)

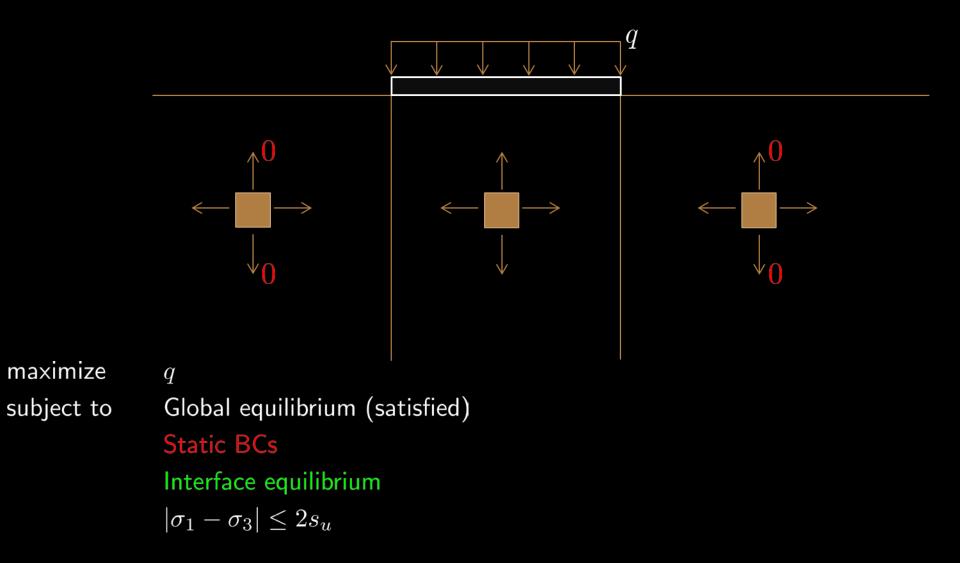


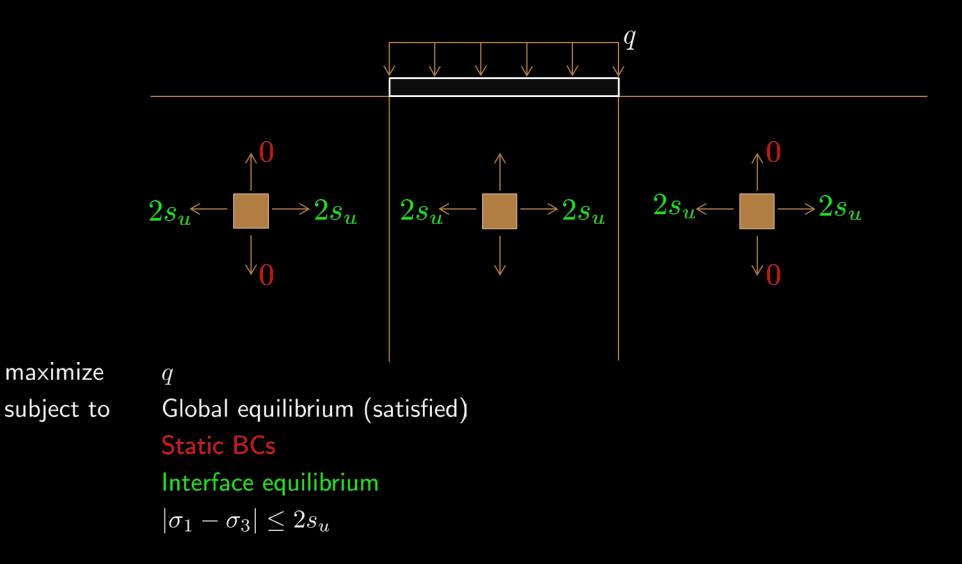


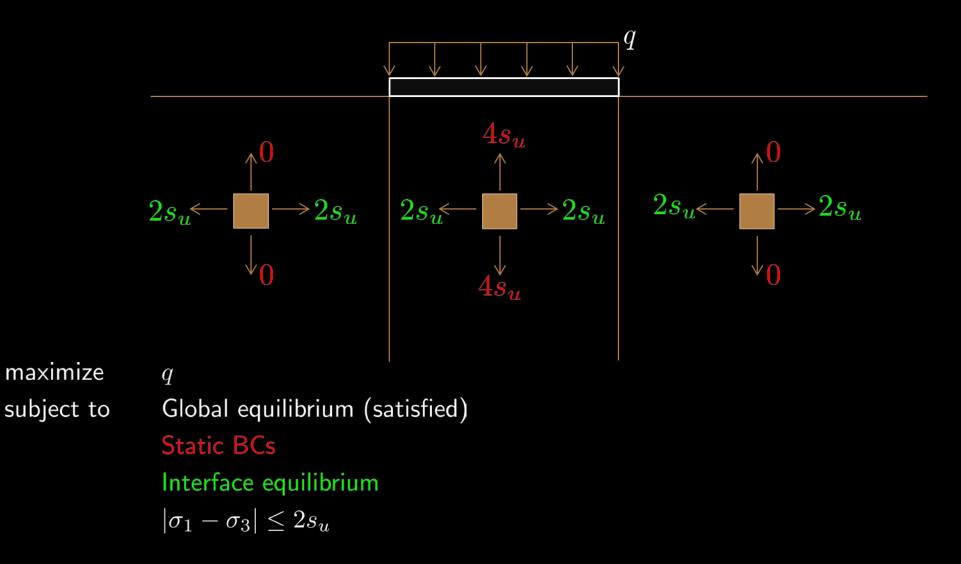


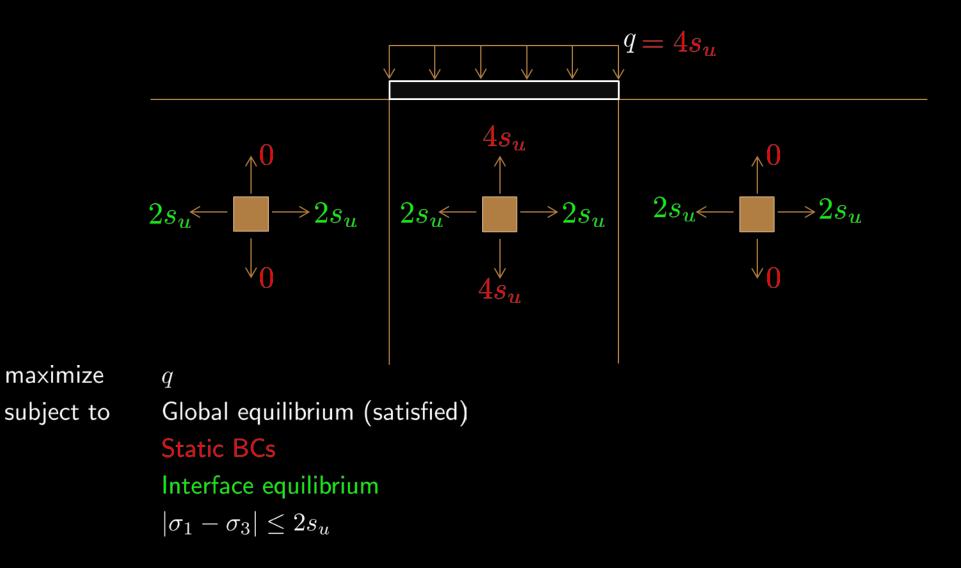


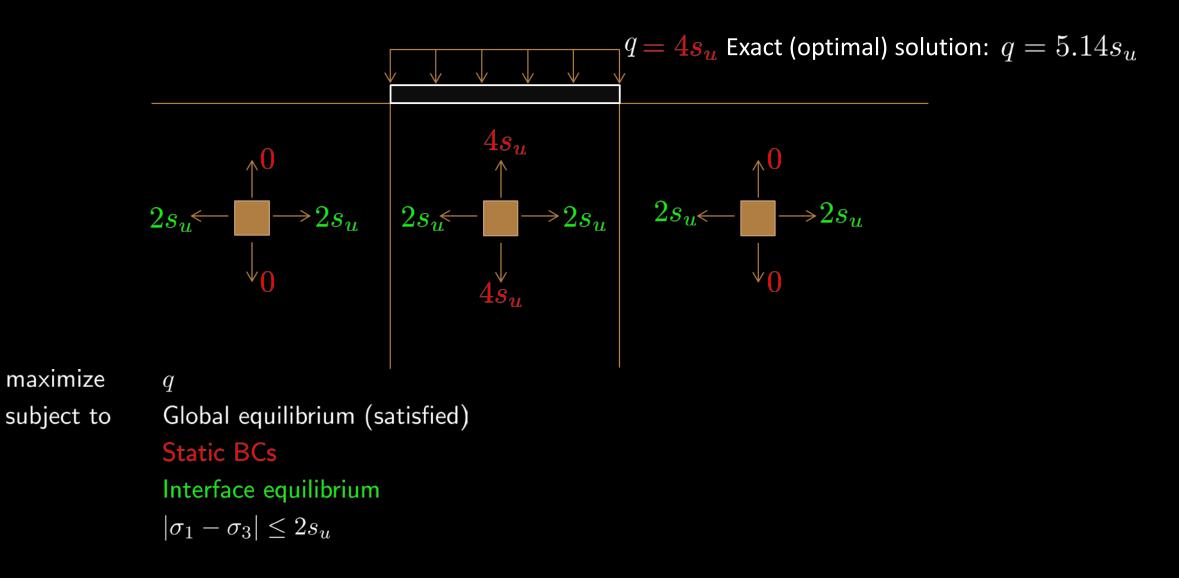


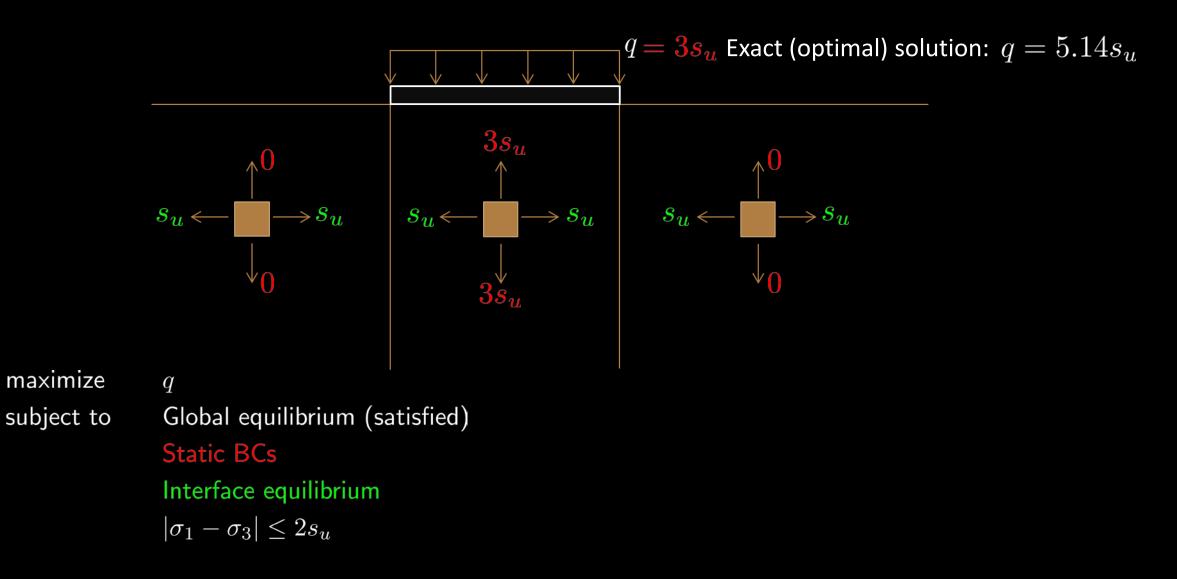


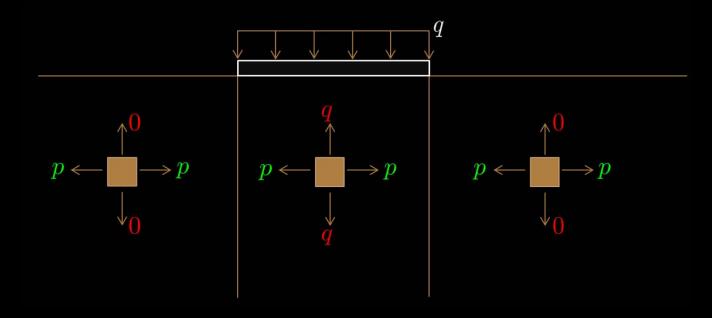




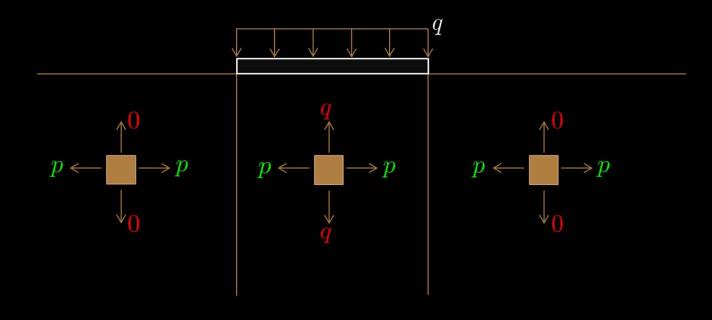






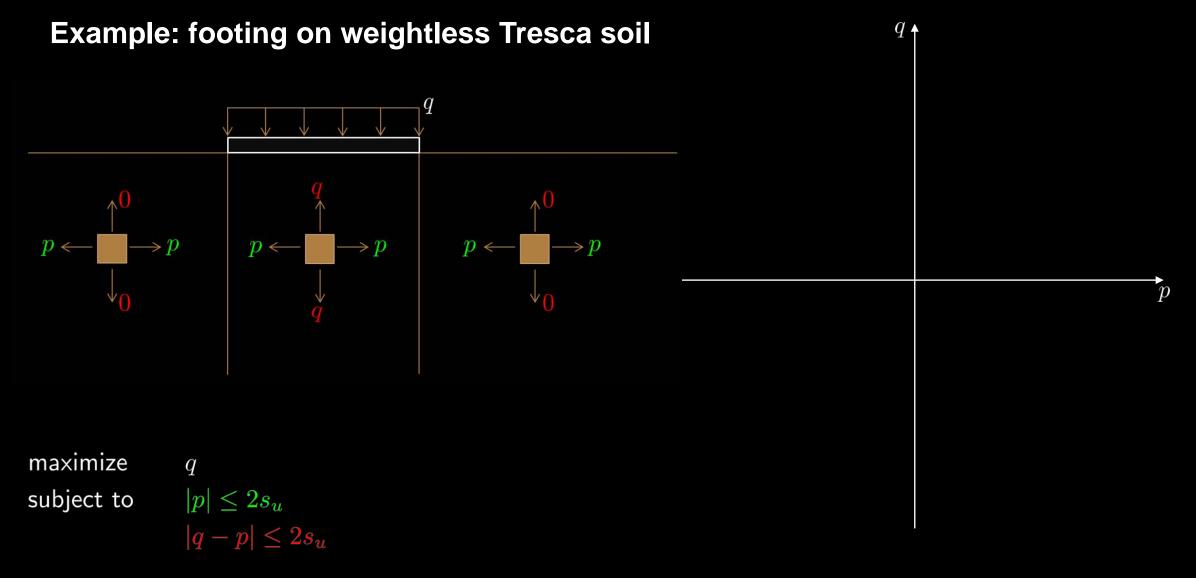


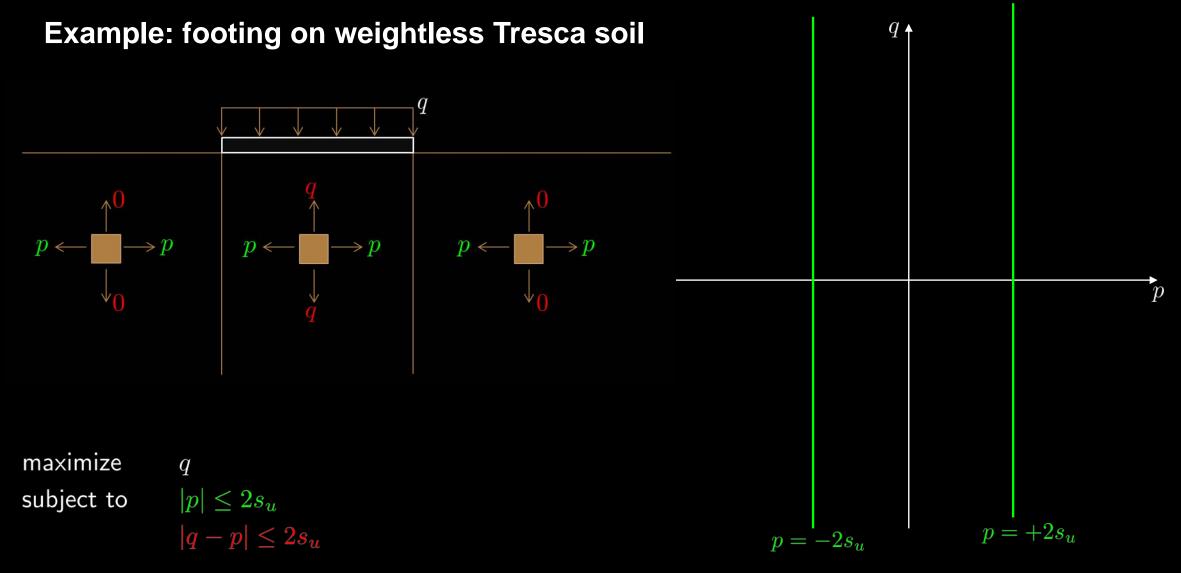
Example: footing on weightless Tresca soil

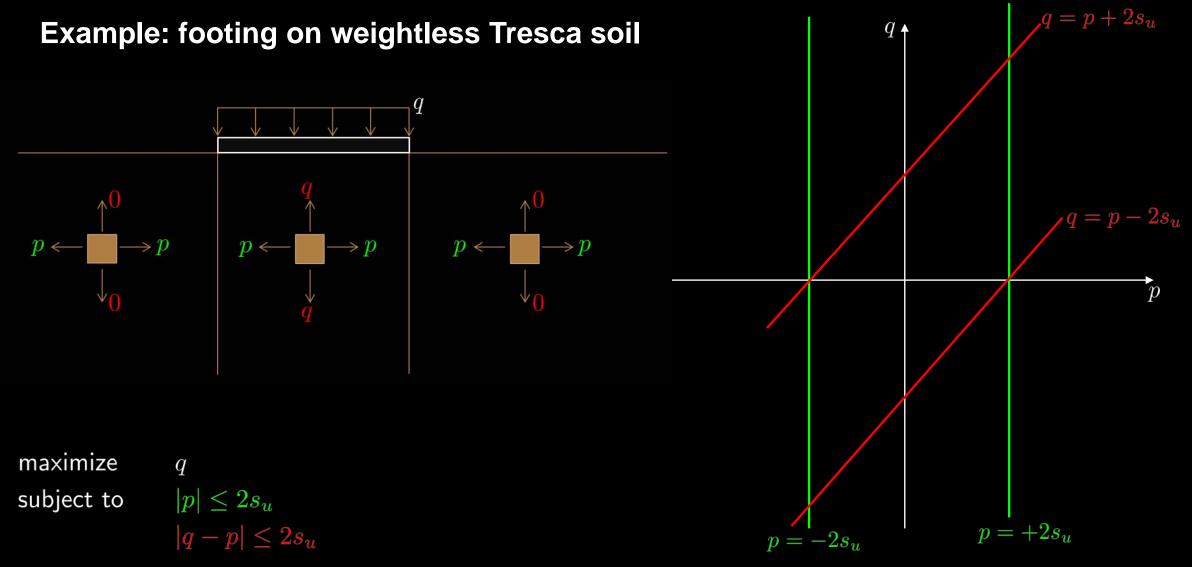


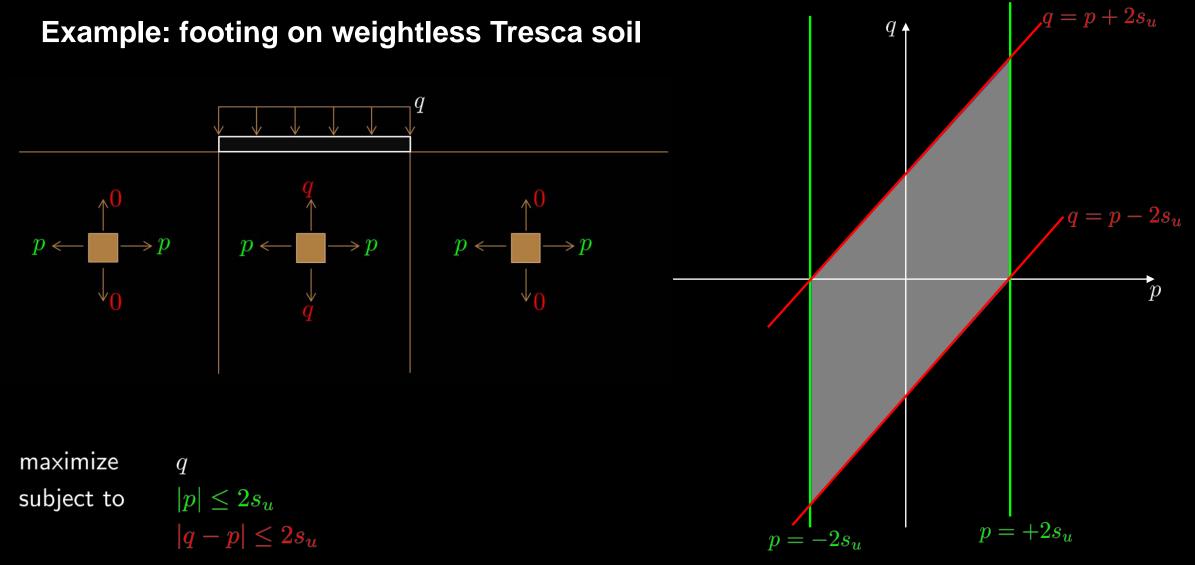
 $\begin{array}{ll} \text{maximize} & q \\ \text{subject to} & |p| \end{array}$

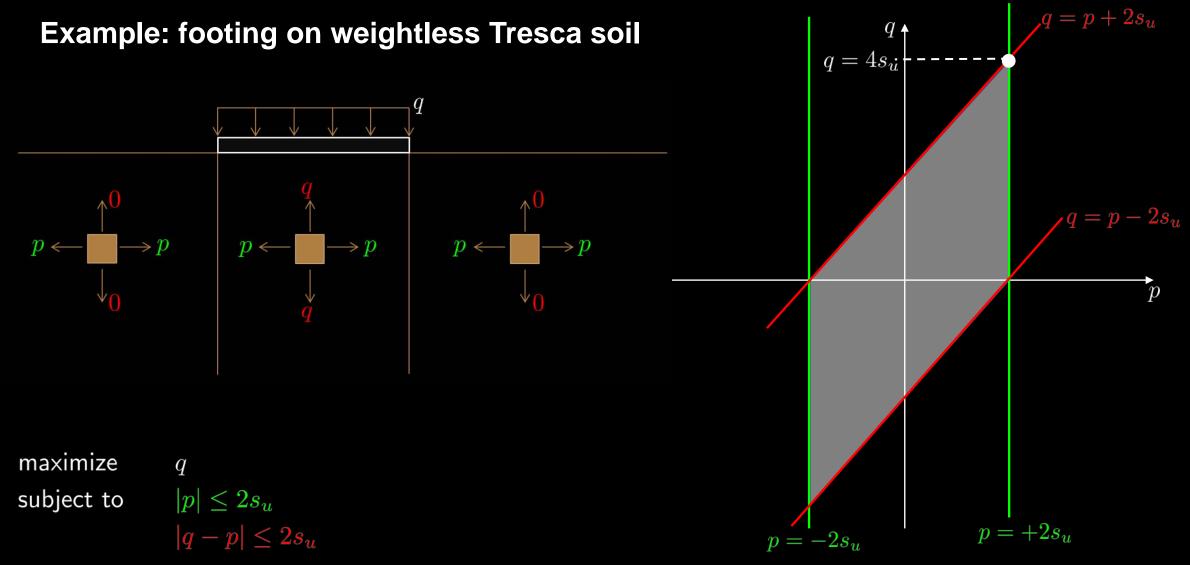
 $\begin{aligned} |p| &\leq 2s_u \\ |q-p| &\leq 2s_u \end{aligned}$

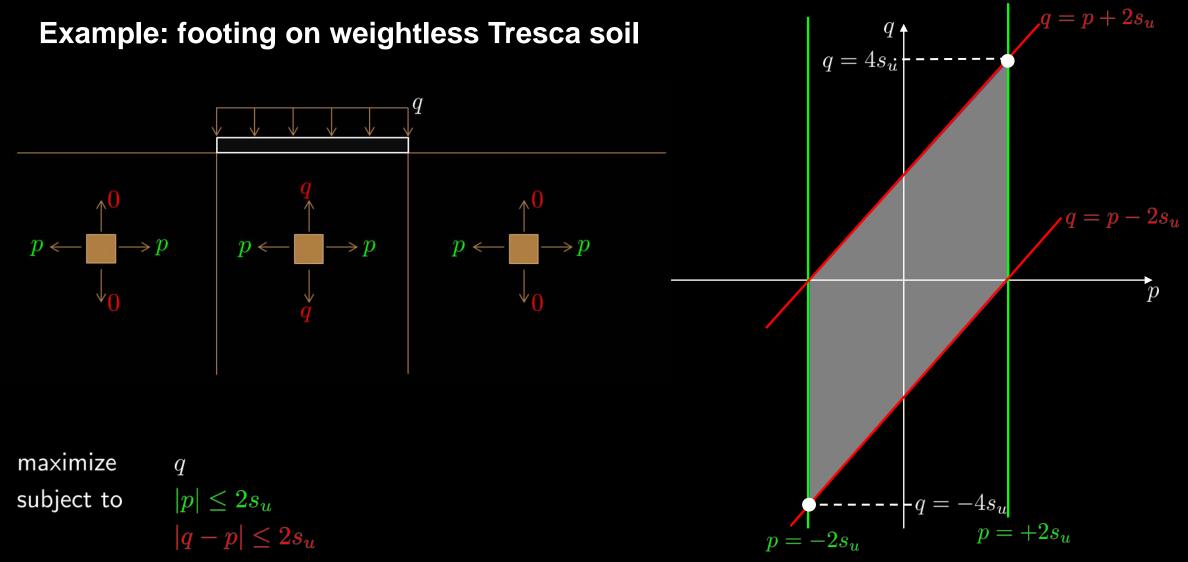


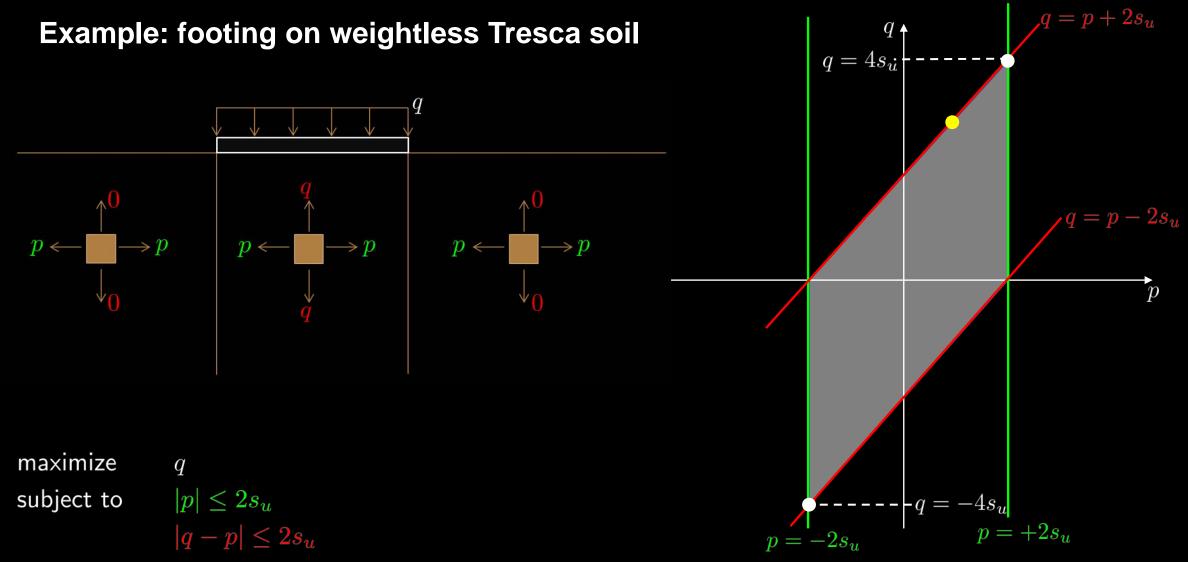


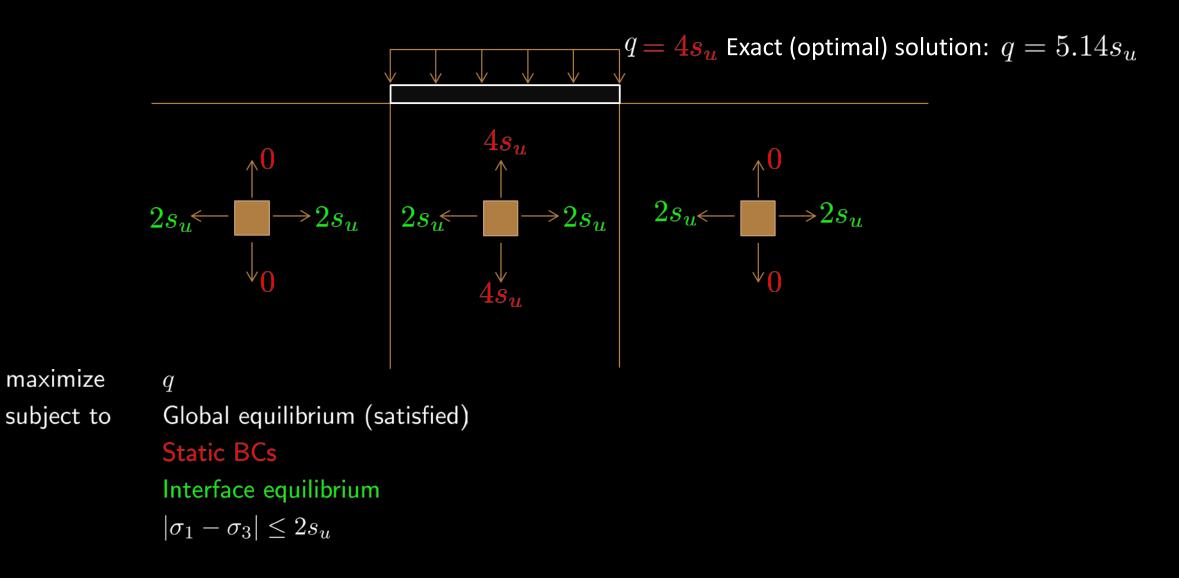


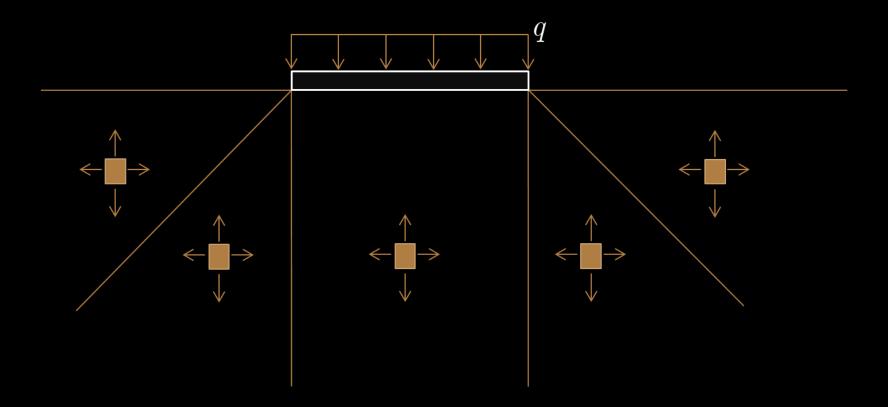


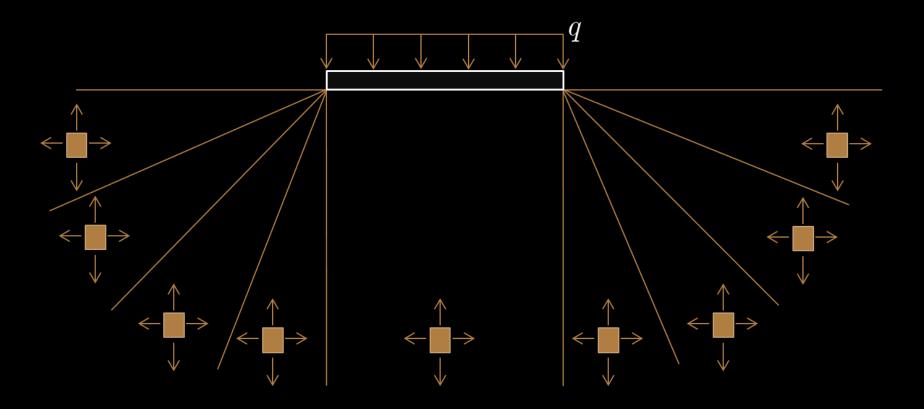


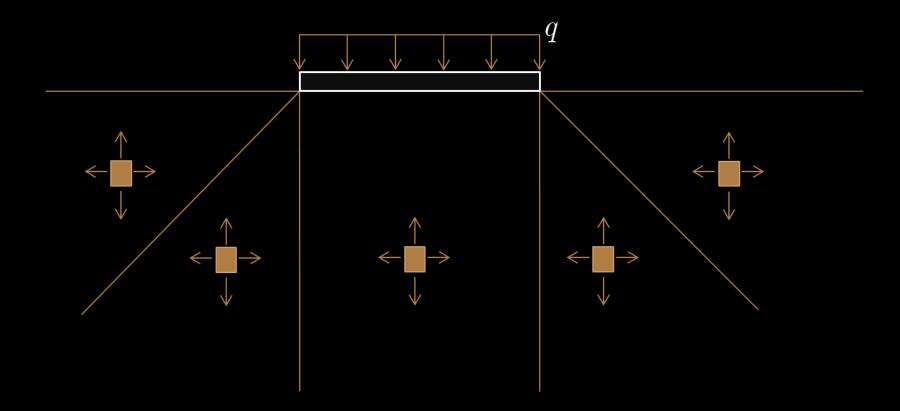


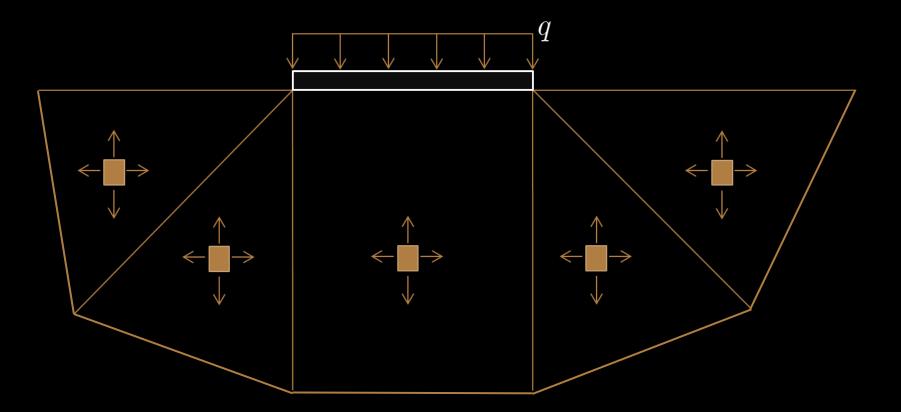


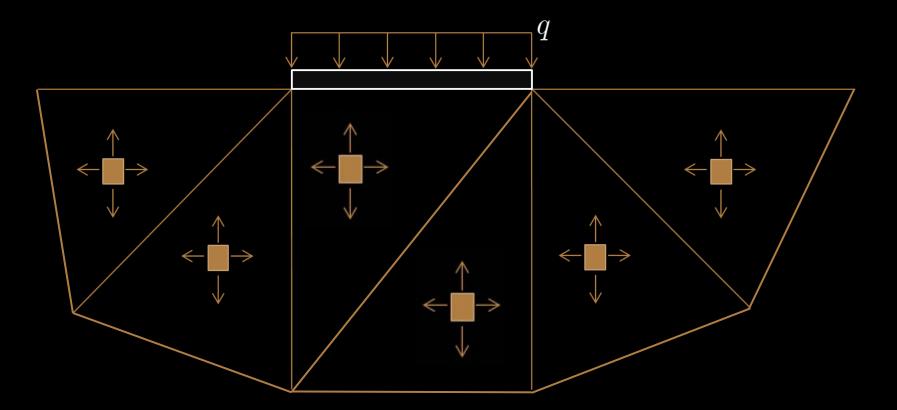










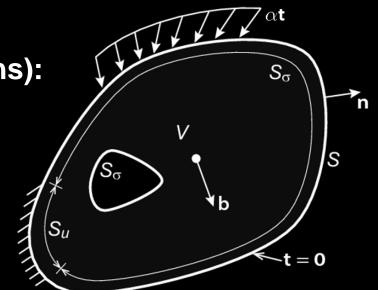


Variational principle (equivalent to governing equations):

maximize α

subject to

$$oldsymbol{
abla} oldsymbol{
abla} oldsymbol$$



Discretize: replace continuous variables with discrete counterparts to obtain discrete optimization problem:

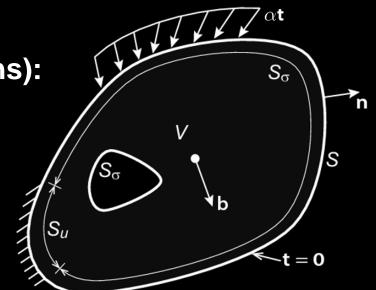
maximize α subject to $\boldsymbol{B}^{\mathsf{T}}\boldsymbol{\sigma} = \alpha \boldsymbol{f} + \boldsymbol{f_0}$ $F(\boldsymbol{\sigma}) \leq 0$

Variational principle (equivalent to governing equations):

maximize α

subject to

$$oldsymbol{
abla} \cdot oldsymbol{\sigma} + oldsymbol{b} = oldsymbol{0}$$
 $oldsymbol{n} \cdot oldsymbol{\sigma} = lpha oldsymbol{t}$ on S_{σ} $F(oldsymbol{\sigma}) \leq 0$



Discretize: replace continuous variables with discrete counterparts to obtain discrete optimization problem:

 $\begin{array}{ll} \text{maximize} & \alpha \\ \text{subject to} & \boldsymbol{B}^{\mathsf{T}}\boldsymbol{\sigma} = \alpha \boldsymbol{f} + \boldsymbol{f_0} \\ & F(\boldsymbol{\sigma}) \leq 0 \end{array}$

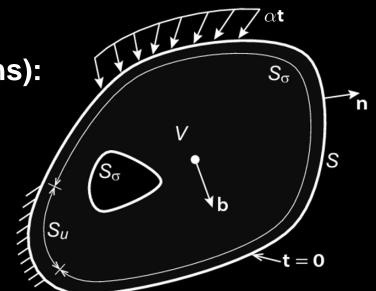
Very efficient and robust algorithms now available (conic programming)

Variational principle (equivalent to governing equations):

maximize α

subject to

$$oldsymbol{
abla} \cdot oldsymbol{\sigma} + oldsymbol{b} = oldsymbol{0}$$
 $oldsymbol{n} \cdot oldsymbol{\sigma} = lpha oldsymbol{t}$ on S_{σ} $F(oldsymbol{\sigma}) \leq 0$



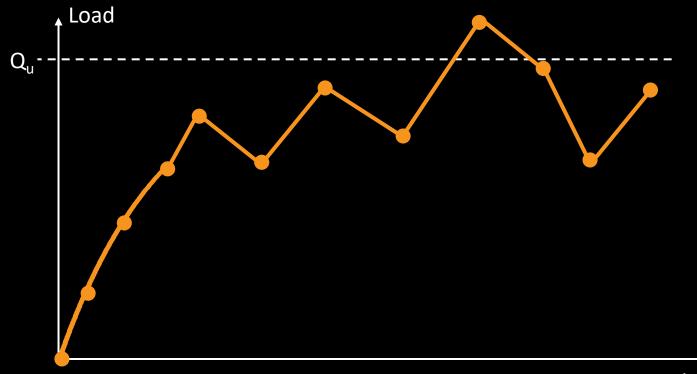
Discretize: replace continuous variables with discrete counterparts to obtain discrete optimization problem:

 $\begin{array}{ll} \text{maximize} & \alpha \\ \text{subject to} & \boldsymbol{B}^{\mathsf{T}}\boldsymbol{\sigma} = \alpha \boldsymbol{f} + \boldsymbol{f_0} \\ & F(\boldsymbol{\sigma}) \leq 0 \end{array}$

Upper bound formulation takes same form but with slightly different B, f, f₀

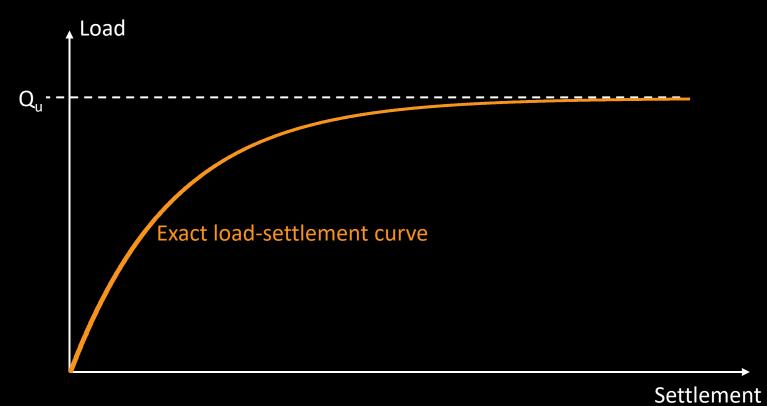
The conventional FE approach

Increase load to failure:



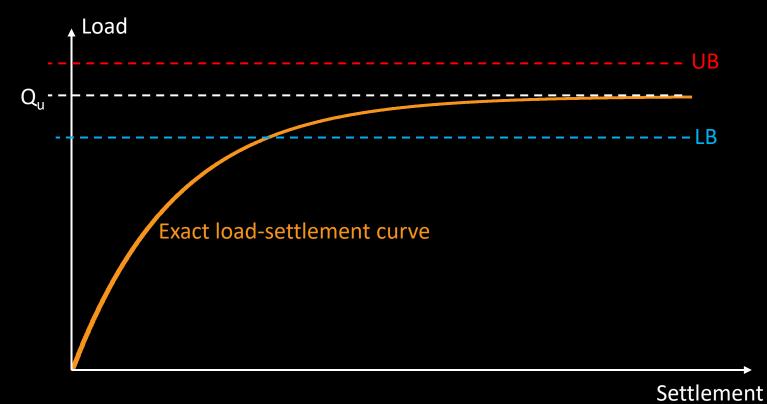
Settlement

Increase load to failure:

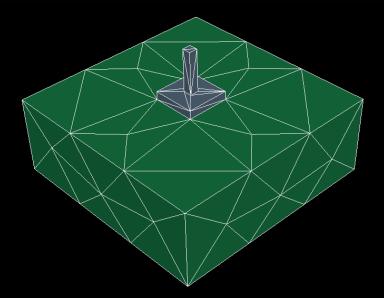


What is the limit load?

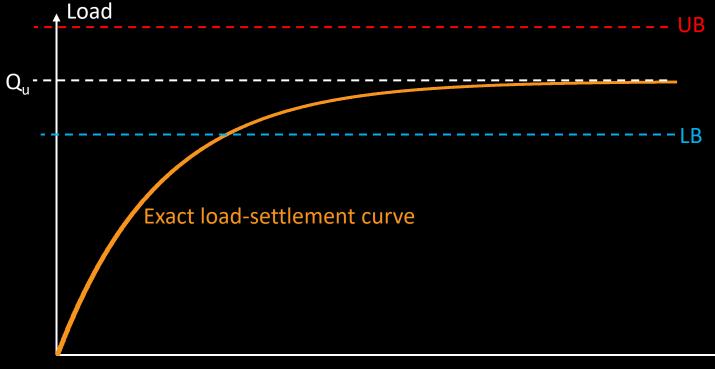
Increase load to failure:



What is the limit load?



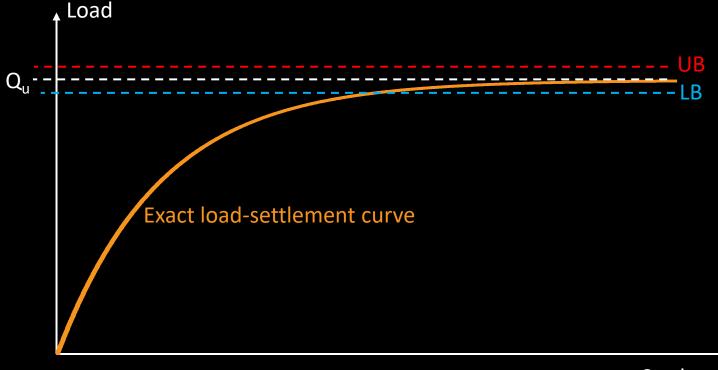
Increase load to failure:



Settlement

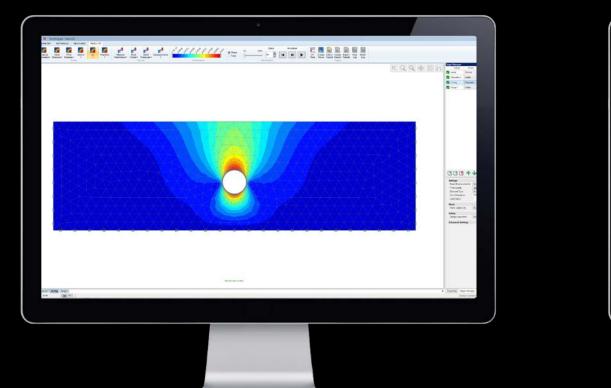
How accurate is the solution?

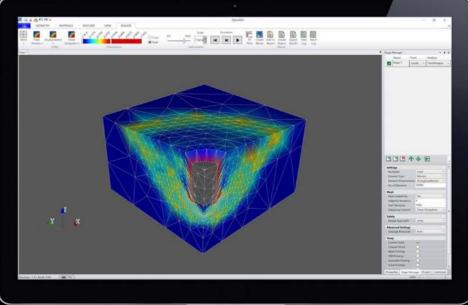
Increase load to failure:



Settlement

How accurate is the solution?



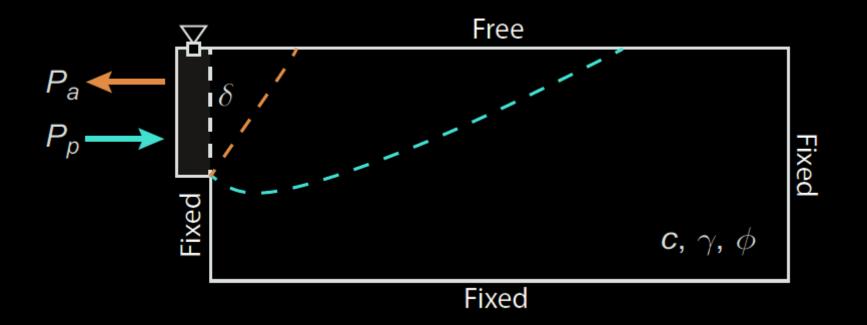


OPTUM G2

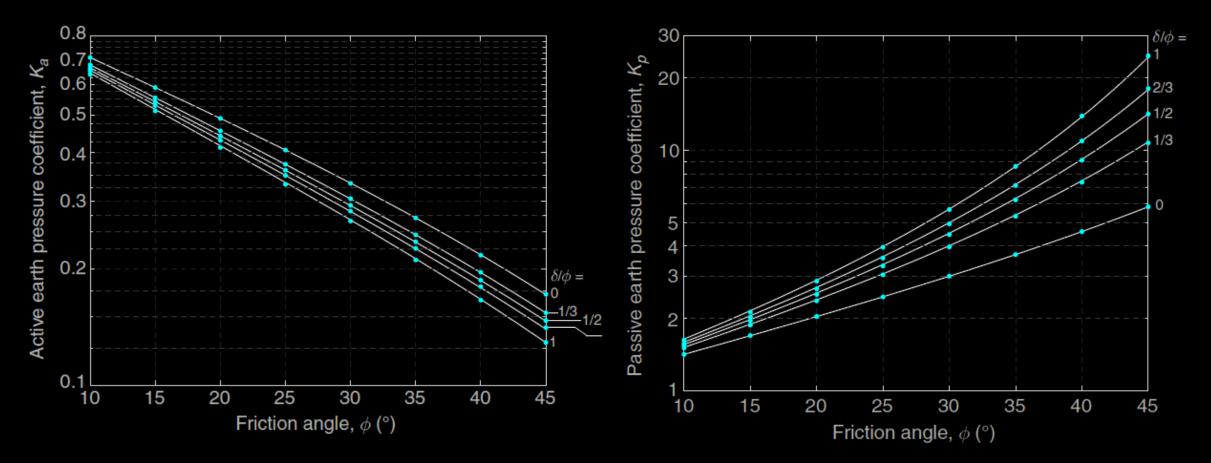
OPTUM G3

Abirtrary problems can now be solved – to within a verified accuracy – in a reasonable amount of time

Earth pressure coefficients

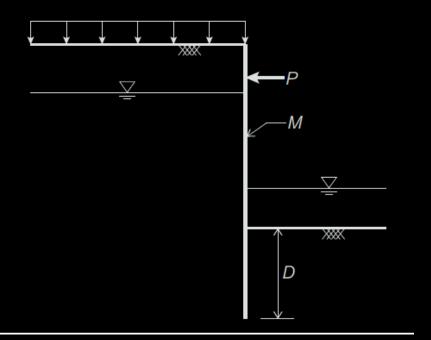


Earth pressure coefficients



Dots: FELA, curves: fits (see paper). Accuracy = ± 1%

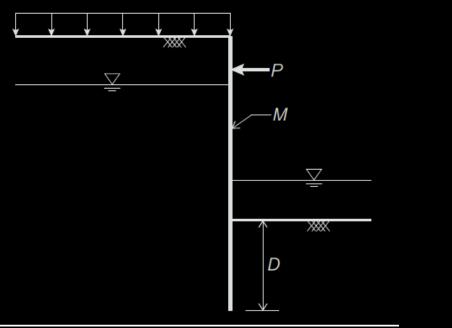
Embedded retaining walls



Design variables:

- + Wall moment capacity (M)
- + Anchor capacity (P)
- + Embedment depth (D)

Embedded retaining walls



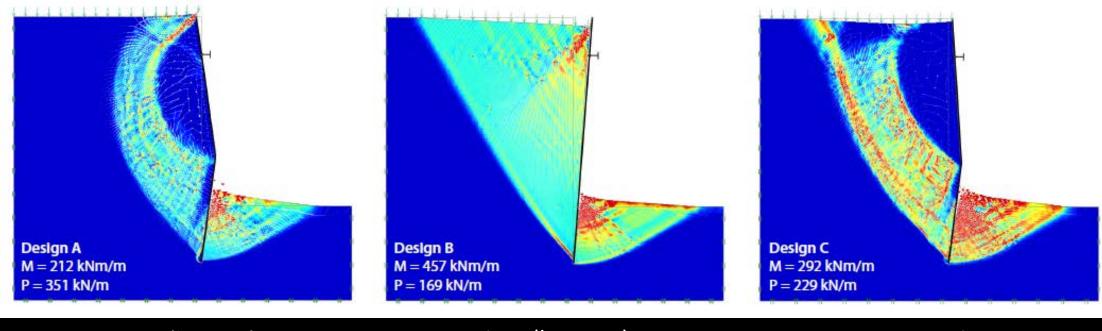
Design variables:

- + Wall moment capacity (M)
- + Anchor capacity (P)
- + Embedment depth (D)

For given D:

- + Minimize wall moment
- + Minimize anchor capacity
- + Minimize combination of wall moment capacity and anchor capacity

Embedded retaining walls

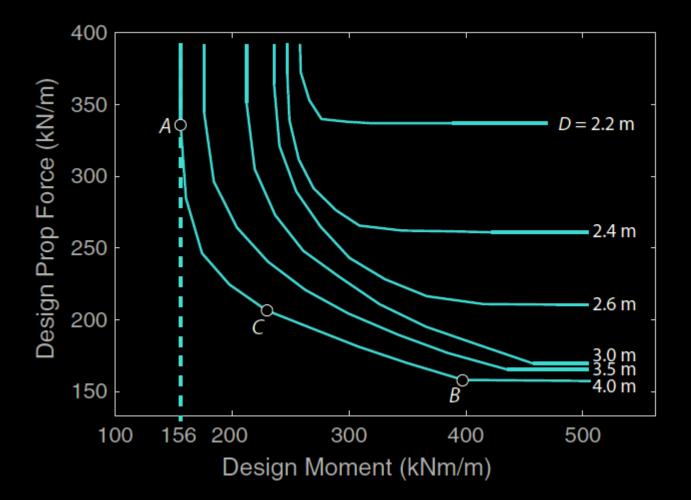


Min M (large P)

Min P (large M)

Compromise

Embedded retaining walls



Rigid plasticity

Equilibrium: $oldsymbol{
abla}\cdotoldsymbol{\sigma}+b=0$ Static BC: $oldsymbol{n}\cdotoldsymbol{\sigma}=lphaoldsymbol{t}$ on S_{σ}

Strain-disp:

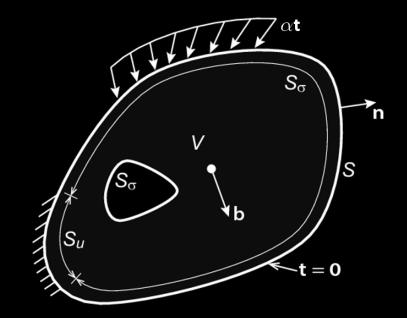
$$\dot{oldsymbol{arepsilon}}^p = oldsymbol{
abla} \dot{oldsymbol{u}}$$

Yield condition: $F(\mathbf{a})$

Flow rule:

$$\dot{oldsymbol{arphi}}^p = \dot{\lambda} rac{\partial F}{\partial oldsymbol{\sigma}}$$

Complementarity: $\dot{\lambda} \geq 0, \ \dot{\lambda}F(\boldsymbol{\sigma}) = 0$



Variational formulation

 $\begin{array}{ll} \text{maximize} & \alpha \\ \text{subject to} & \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} + \boldsymbol{b} = \boldsymbol{0} \\ & \boldsymbol{n} \cdot \boldsymbol{\sigma} = \alpha \boldsymbol{t} \ \ \text{on} \ S_{\sigma} \\ & F(\boldsymbol{\sigma}) \leq 0 \end{array}$

Rigid plasticity

Equilibrium: $\mathbf{
abla}\cdot oldsymbol{\sigma}+oldsymbol{b}=\mathbf{0}$ Static BC: $n\cdot oldsymbol{\sigma}=lpha t$ on S_{σ}

 $\dot{arepsilon}$

Strain-disp:

$${}^{p}=oldsymbol{
abla}\dot{oldsymbol{u}}$$

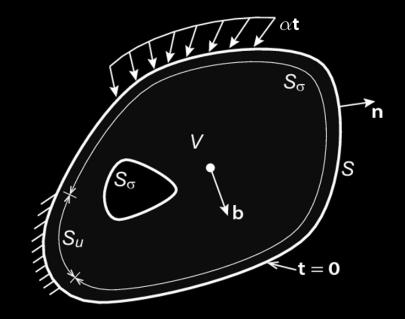
Yield condition:
$$F(\boldsymbol{\sigma}) \leq 0$$

Flow rule:

$$d^{p} = \dot{\lambda} \frac{\partial F}{\partial \sigma}$$

Complementarity: $\dot{\lambda} \geq 0, \ \dot{\lambda}F(\boldsymbol{\sigma}) = 0$

What about settlements (elastoplasticity)?



Variational formulation

 $\begin{array}{ll} {\rm maximize} & \alpha \\ {\rm subject \ to} & {\boldsymbol \nabla}\cdot{\boldsymbol \sigma}+{\boldsymbol b}={\boldsymbol 0} \\ & {\boldsymbol n}\cdot{\boldsymbol \sigma}=\alpha{\boldsymbol t} \ \ {\rm on} \ S_{\sigma} \\ & F({\boldsymbol \sigma})\leq 0 \end{array}$

Elastoplasticity

- Equilibrium: $oldsymbol{
 abla}\cdotoldsymbol{\sigma}+b=0$
- Static BC: $oldsymbol{n}\cdotoldsymbol{\sigma}=lphaoldsymbol{t}$ on S_{σ}
- Strain-disp-Hooke: $\nabla \dot{\boldsymbol{u}} = \mathbb{C}\dot{\boldsymbol{\sigma}} + \dot{\boldsymbol{\varepsilon}}^p$

 $\dot{arepsilon}^p$

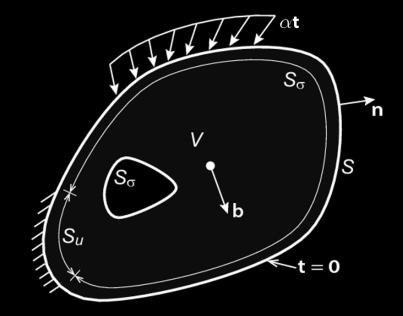
Yield condition: $F({m \sigma}) \leq 0$

Flow rule:

$$=\dot{\lambda}\frac{\partial F}{\partial \boldsymbol{\sigma}}$$

Complementarity: $\dot{\lambda} \geq 0, \ \dot{\lambda}F(\boldsymbol{\sigma}) = 0$

What about settlements (elastoplasticity)?



Variational formulation

 $\begin{array}{ll} \mbox{maximize} & \alpha \\ \mbox{subject to} & \boldsymbol{\nabla}\cdot\boldsymbol{\sigma}+\boldsymbol{b}=\boldsymbol{0} \\ & \boldsymbol{n}\cdot\boldsymbol{\sigma}=\alpha\boldsymbol{t} \ \ \mbox{on} \ S_{\sigma} \\ & F(\boldsymbol{\sigma})\leq 0 \end{array}$

Elastoplasticity

Equilibrium: $oldsymbol{
abla}\cdotoldsymbol{\sigma}+b=0$

Static BC: $oldsymbol{n}\cdotoldsymbol{\sigma}=lphaoldsymbol{t}$ on S_{σ}

Strain-disp-Hooke: $\nabla \dot{\boldsymbol{u}} = \overline{\mathbb{C}\dot{\boldsymbol{\sigma}} + \dot{\boldsymbol{\varepsilon}}^p}$

 $\dot{arepsilon}^p$

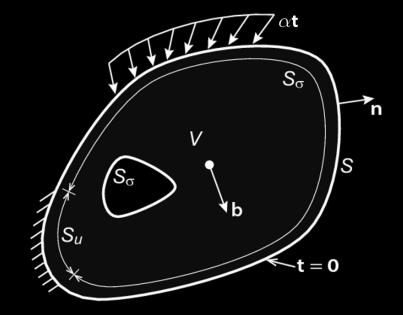
Yield condition: $F({m \sigma}) \leq 0$

Flow rule:

$$=\dot{\lambda}rac{\partial F}{\partial \sigma}$$

Complementarity: $\dot{\lambda} \geq 0, \ \dot{\lambda}F(\boldsymbol{\sigma}) = 0$

What about settlements (elastoplasticity)?



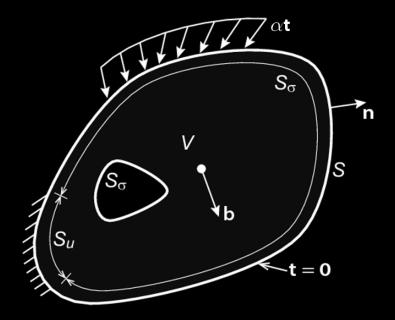
Variational formulation

 $\begin{array}{ll} \text{maximize} & \alpha - \int_{V} \frac{1}{2} \Delta \boldsymbol{\sigma} \cdot \mathbb{C} \Delta \boldsymbol{\sigma} \, \mathrm{d} V \\ \text{subject to} & \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} + \boldsymbol{b} = \boldsymbol{0} \\ & \boldsymbol{n} \cdot \boldsymbol{\sigma} = \alpha \boldsymbol{t} \quad \text{on } S_{\sigma} \\ & F(\boldsymbol{\sigma}) \leq 0 \end{array}$

Rigid plasticity

maximize α subject to ∇

$$oldsymbol{
abla} oldsymbol{
abla} oldsymbol{\sigma} oldsy$$



Elastoplasticity

 $\begin{array}{ll} \text{maximize} & \alpha - \int_{V} \frac{1}{2} \Delta \boldsymbol{\sigma} \cdot \mathbb{C} \Delta \boldsymbol{\sigma} \, \mathrm{d} V \\ \text{subject to} & \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} + \boldsymbol{b} = \boldsymbol{0} \\ & \boldsymbol{n} \cdot \boldsymbol{\sigma} = \alpha \boldsymbol{t} \ \text{ on } S_{\sigma} \\ & F(\boldsymbol{\sigma}) \leq 0 \end{array}$

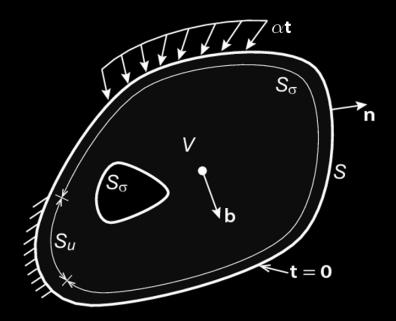
Similar modifications to reproduce governing equations of hardening plasticity, coupled pore pressure-deformation, dynamics, and more

 α

Rigid plasticity

maximize subject to

$$oldsymbol{
abla} oldsymbol{
abla} oldsymbol{\sigma} oldsymbol{\sigma} oldsymbol{\sigma} = lpha oldsymbol{t}$$
 on S_{σ}
 $F(oldsymbol{\sigma}) \leq 0$



Elastoplasticity

 $\begin{array}{ll} \text{maximize} & \alpha - \int_{V} \frac{1}{2} \Delta \boldsymbol{\sigma} \cdot \mathbb{C} \Delta \boldsymbol{\sigma} \, \mathrm{d} V \\ \text{subject to} & \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} + \boldsymbol{b} = \boldsymbol{0} \\ & \boldsymbol{n} \cdot \boldsymbol{\sigma} = \alpha \boldsymbol{t} \ \text{ on } S_{\sigma} \\ & F(\boldsymbol{\sigma}) \leq 0 \end{array}$

OPTUM is general FE – not just limit analysis – but approached from the view of Euler's maximum/minimum postulate

Alernative narrative: limit analysis follows as a special (and useful) case of elastoplasticity:

maximize

 $\alpha - \int_V \frac{1}{2} \Delta \boldsymbol{\sigma} \cdot \mathbb{C} \Delta \boldsymbol{\sigma} \, \mathrm{d} V$ subject to $\mathbf{\nabla}\cdot \boldsymbol{\sigma} + \boldsymbol{b} = \mathbf{0}$ $oldsymbol{n}\cdotoldsymbol{\sigma}=lphaoldsymbol{t}$ on S_{σ} $F(\boldsymbol{\sigma}) \leq 0$

OPTUM is general FE – not just limit analysis – but approached from the view of **Euler's maximum/minimum postulate**

Alernative narrative: limit analysis follows as a special (and useful) case of elastoplasticity:

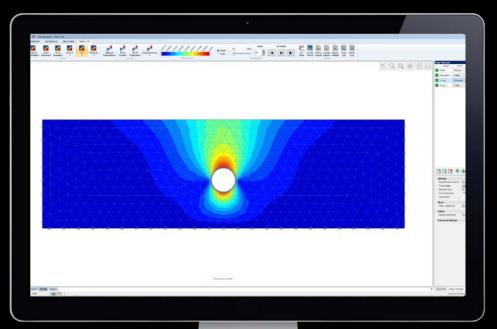
 $\begin{array}{ll} \mathsf{maximize} & \alpha \\ \mathsf{subject to} & \boldsymbol{\nabla}\cdot\boldsymbol{\sigma} + \boldsymbol{b} = \boldsymbol{0} \\ & \boldsymbol{n}\cdot\boldsymbol{\sigma} = \alpha \boldsymbol{t} \ \ \mathsf{on} \ S_{\sigma} \\ & F(\boldsymbol{\sigma}) \leq \boldsymbol{0} \end{array}$

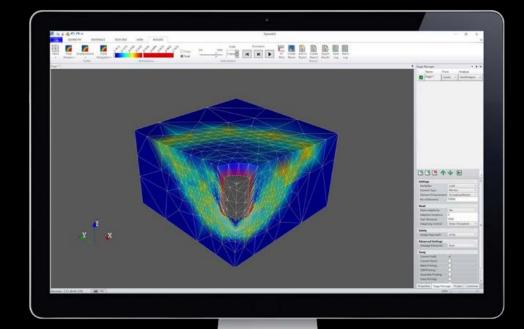
OPTUM is general FE – not just limit analysis – but approached from the view of Euler's maximum/minimum postulate

Summary

- + Same governing equations but approached differently
- + No limitations in terms of physics that can be dealt with
- + Significant advantages in terms of computational efficiency and robustness
- + Ability to compute rigorous error estimates (upper/lower)
- + Ability to provide direct answers to direct questions, e.g. what is the limit load?
- + Ability to deal directly with engineering design, c.f. sheet pile design charts

Future developments





OPTUM G2

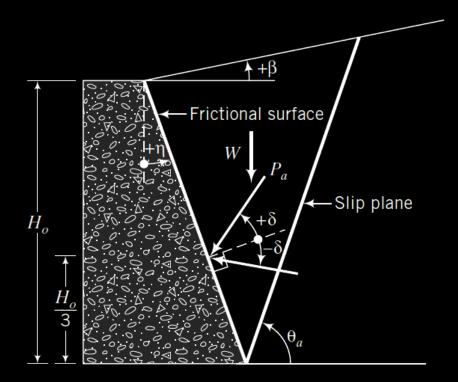
OPTUM G3

Future developments

Future developments

The world is 3D – Why do we then use 2D?

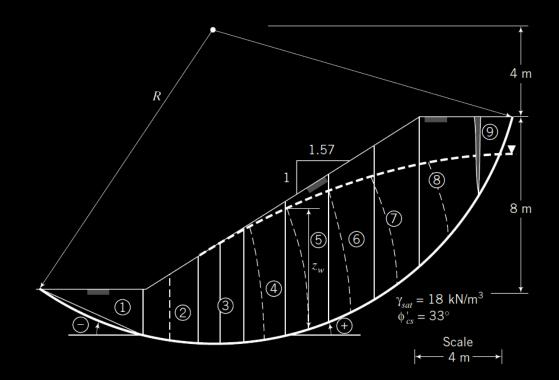
Retaining walls



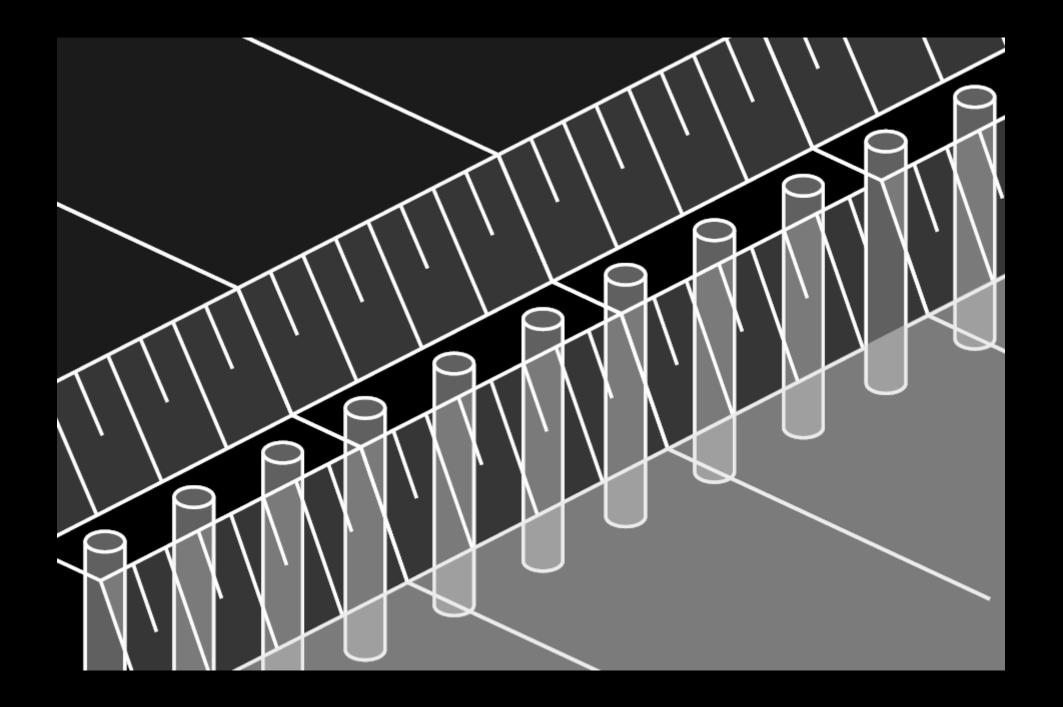
Foundations

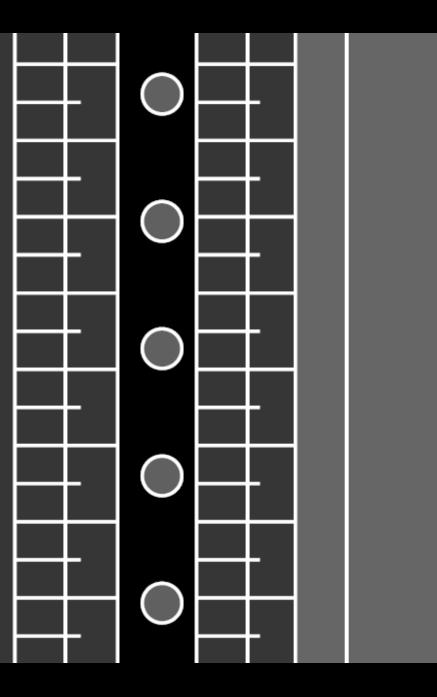


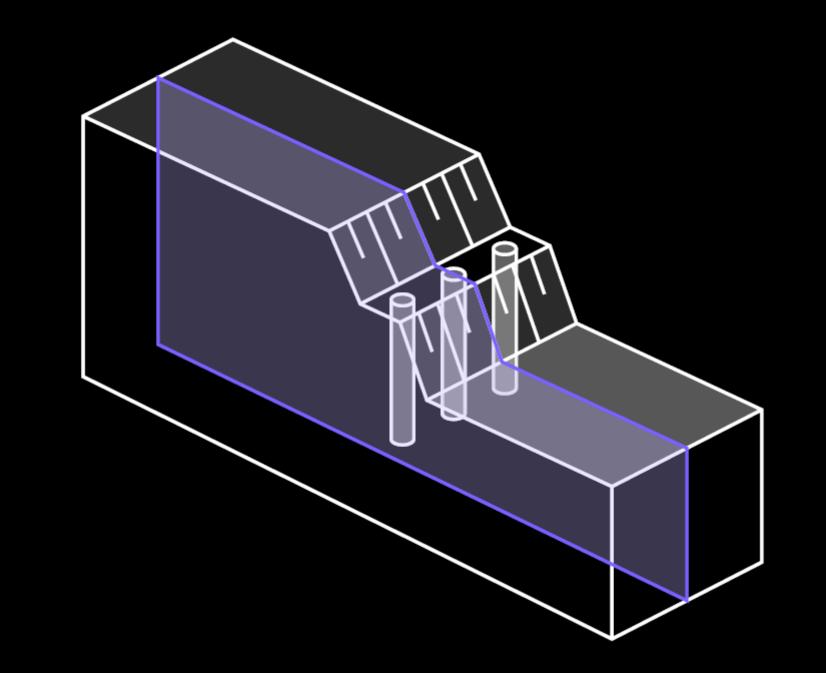
Slopes

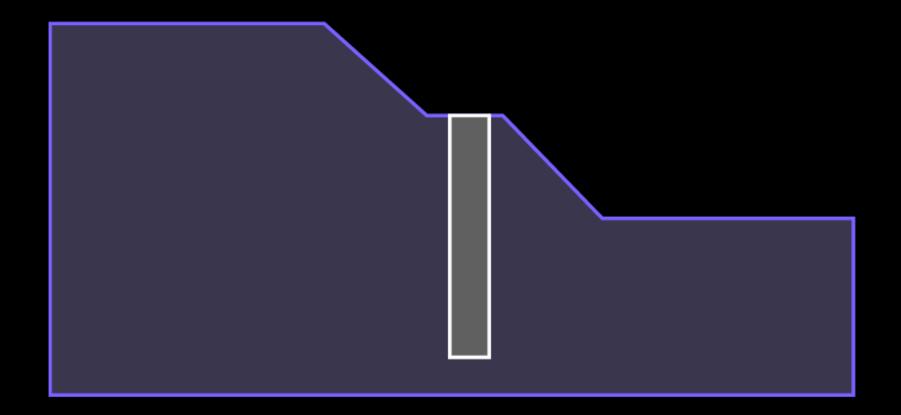


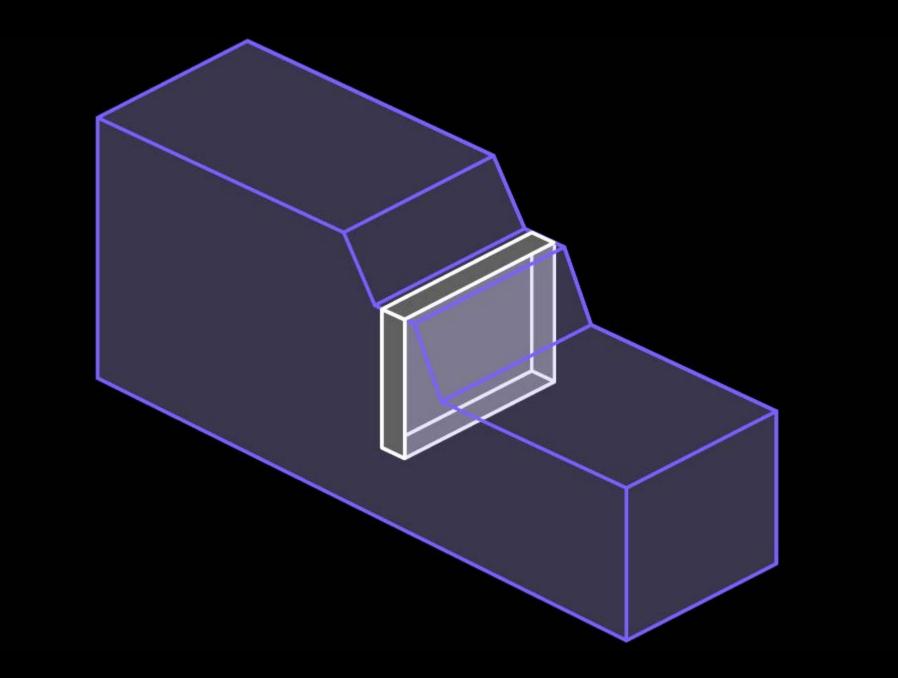
Example 1 Pile reinforced slope



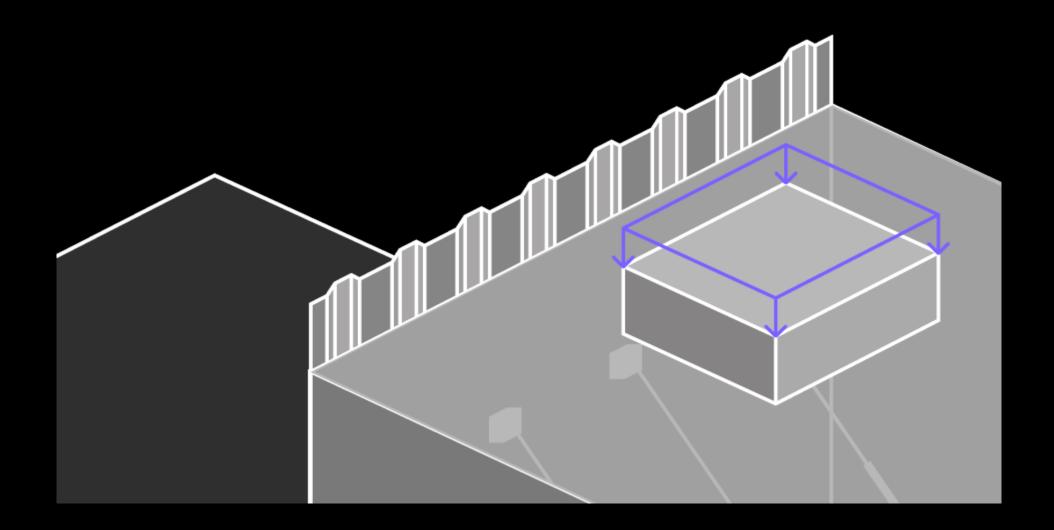


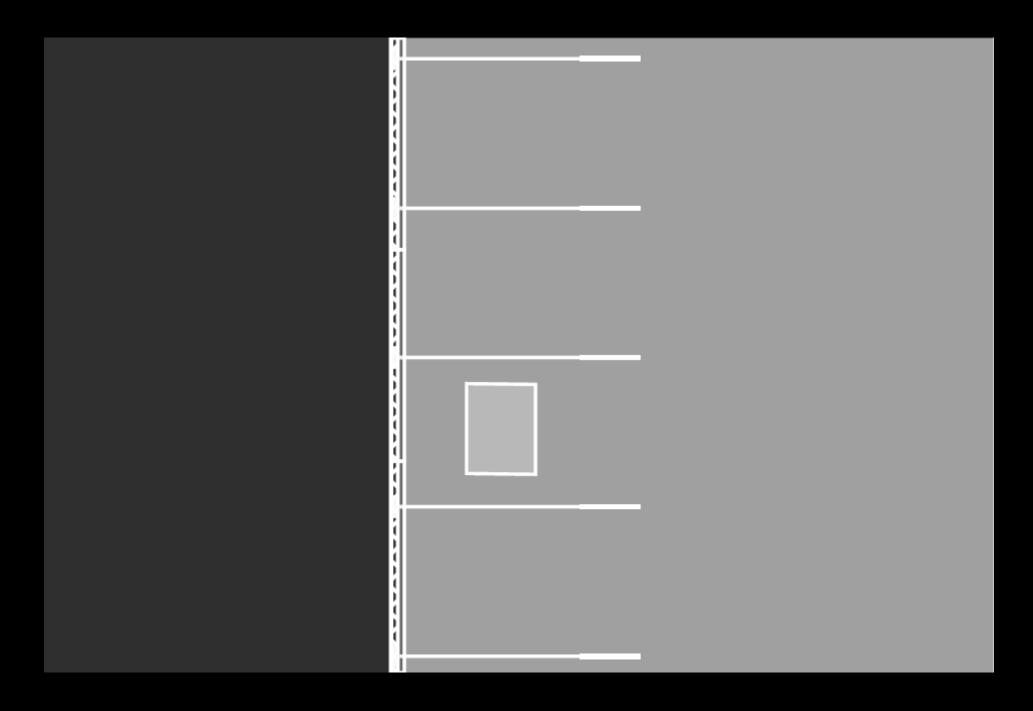


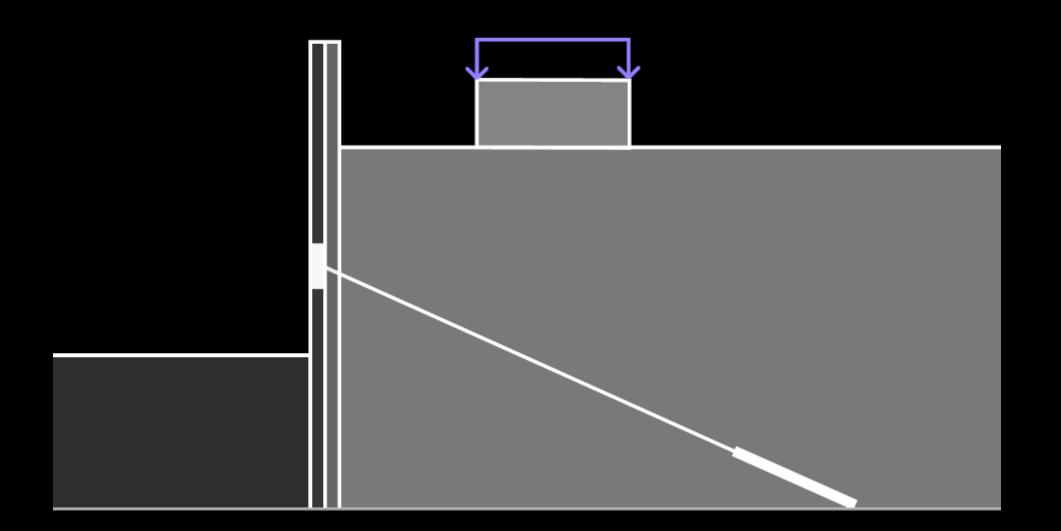




Example 2 Foundation settlement

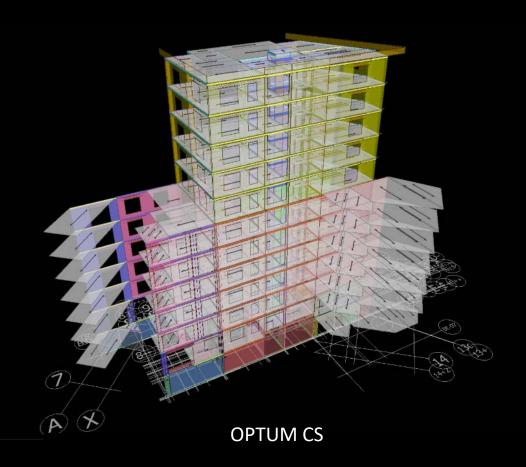






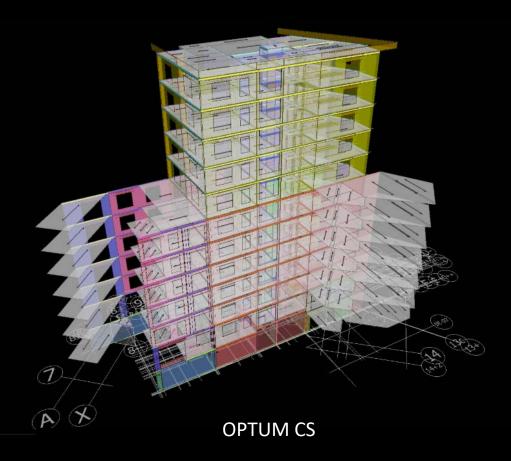
Why 2D?

+ All other areas of engineering are in 3D by default – mechanical, aerospace, steel, concrete, etc



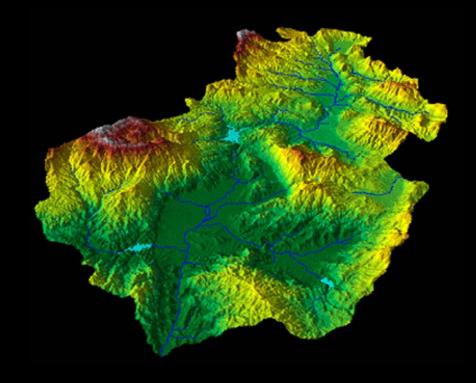
Why 2D?

- + All other areas of engineering are in 3D by default mechanical, aerospace, steel, concrete, etc
- + BIM is inherently 3D whether or not the calculations are done in 3D



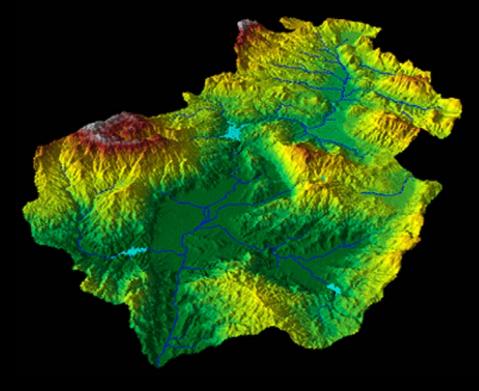
Why 2D?

- + All other areas of engineering are in 3D by default mechanical, aerospace, steel, concrete, etc
- + BIM is inherently 3D whether or not the calculations are done in 3D
- + Terrain data increasingly specified in terms of Digitial Elevation Models



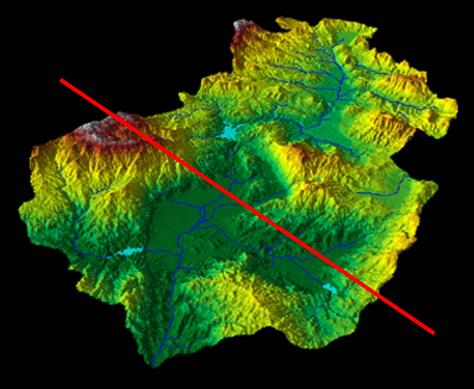
On the other hand

- + The world is 3D *but* 2D is convenient and sometimes the only feasible approach
- + Many geotechnical problems are to a good approximation 2D
- + Common 2D/3D requirements:
 - Extrude 2D models to 3D
 - Cut through 3D models to obtain 2D sections



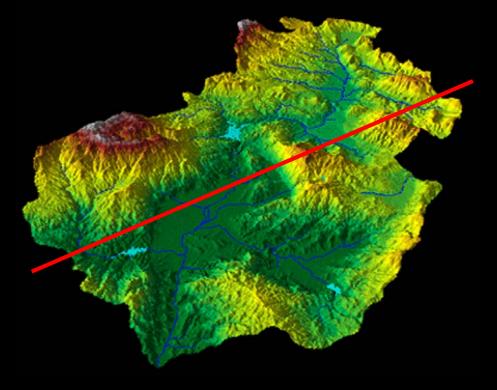
On the other hand

- + The world is 3D *but* 2D is convenient and sometimes the only feasible approach
- + Many geotechnical problems are to a good approximation 2D
- + Common 2D/3D requirements:
 - Extrude 2D models to 3D
 - Cut through 3D models to obtain 2D sections



On the other hand

- + The world is 3D *but* 2D is convenient and sometimes the only feasible approach
- + Many geotechnical problems are to a good approximation 2D
- + Common 2D/3D requirements:
 - Extrude 2D models to 3D
 - Cut through 3D models to obtain 2D sections



Solution: Merge 2D and 3D

Thanks for you attention

Question:

How safe is the slope?

Question:

What is the ratio between driving and resisting forces?

Question:

By what factor should the material strength parameters be reduced to induce failure?

Question:

By what factor should the material strength parameters be reduced to induce failure?

Solve iteratively:

maximize0subject to $\boldsymbol{B}^{\mathsf{T}}\boldsymbol{\sigma} = \boldsymbol{f_0}$ $F(\boldsymbol{\sigma}, \mathrm{FOS}) \leq 0$

Feasible (stable): increase FOS Infeasible (unstable): decrease FOS